咨询与建议

限定检索结果

文献类型

  • 16 篇 会议
  • 8 篇 期刊文献

馆藏范围

  • 24 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 4 篇 机械工程
    • 4 篇 生物工程
    • 3 篇 信息与通信工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 2 篇 控制科学与工程
    • 2 篇 计算机科学与技术...
    • 2 篇 软件工程
    • 1 篇 电气工程
    • 1 篇 生物医学工程(可授...
  • 7 篇 理学
    • 4 篇 生物学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 4 篇 image segmentati...
  • 4 篇 optical characte...
  • 3 篇 pattern recognit...
  • 2 篇 lighting
  • 2 篇 semantics
  • 2 篇 performance anal...
  • 2 篇 feature extracti...
  • 2 篇 histograms
  • 2 篇 text analysis
  • 2 篇 image analysis
  • 2 篇 europe
  • 2 篇 layout
  • 1 篇 baseline estimat...
  • 1 篇 transmission map
  • 1 篇 object detection
  • 1 篇 noise reduction
  • 1 篇 deep space
  • 1 篇 libraries
  • 1 篇 deep learning
  • 1 篇 region 1

机构

  • 3 篇 pattern recognit...
  • 2 篇 computational in...
  • 2 篇 computer vision ...
  • 2 篇 pattern recognit...
  • 2 篇 document image a...
  • 2 篇 pattern recognit...
  • 1 篇 british heart fo...
  • 1 篇 friede springer ...
  • 1 篇 department of pa...
  • 1 篇 computational me...
  • 1 篇 national heart &...
  • 1 篇 department of bi...
  • 1 篇 electrical and e...
  • 1 篇 pattern recognit...
  • 1 篇 department of ne...
  • 1 篇 cardiovascular r...
  • 1 篇 health data scie...
  • 1 篇 precision health...
  • 1 篇 school of scienc...
  • 1 篇 national institu...

作者

  • 4 篇 a. antonacopoulo...
  • 3 篇 maier andreas
  • 3 篇 apostolos antona...
  • 2 篇 mathias seuret
  • 2 篇 stathonikos niko...
  • 2 篇 abhinav dhall
  • 2 篇 klopfleisch robe...
  • 2 篇 b. gatos
  • 2 篇 rolf ingold
  • 2 篇 subrahmanyam mur...
  • 2 篇 bertram christof...
  • 2 篇 marzahl christia...
  • 2 篇 michele alberti
  • 2 篇 veta mitko
  • 2 篇 d. bridson
  • 2 篇 aubreville marc
  • 2 篇 marcus liwicki
  • 1 篇 andre vauvelle
  • 1 篇 hegselmann stefa...
  • 1 篇 yang sen

语言

  • 24 篇 英文
检索条件"机构=Pattern Recognition and Image Analysis Lab"
24 条 记 录,以下是1-10 订阅
排序:
Adaptive Enhancement for Scanned Historical Document images
Adaptive Enhancement for Scanned Historical Document Images
收藏 引用
IEEE International Conference on Electronics and Communication Engineering (ICECE)
作者: Farouk Suleiman Chris J. Hughes E.B. Obio Pattern Recognition and Image Analysis (PRImA) Research Lab University of Salford Greater Manchester United Kingdom School of Science Engineering & Environment University of Salford Greater Manchester United Kingdom School of Science & Engineering University of Manchester Greater Manchester United Kingdom
In this paper we propose, a novel adaptative histogram matching method to remove low contrast, smeared ink, bleed-through and uneven illumination artefacts from scanned images of historical documents. The goal is to p... 详细信息
来源: 评论
LEDNet: Deep Network for Single image Haze Removal  2018
LEDNet: Deep Network for Single Image Haze Removal
收藏 引用
Proceedings of the 11th Indian Conference on Computer Vision, Graphics and image Processing
作者: Akshay Dudhane Subrahmanyam Murala Abhinav Dhall Computer Vision and Pattern Recognition Lab Indian Institute of Technology Ropar India Learning Affect and Semantic Image Analysis Group Indian Institute of Technology Ropar India
Haze during the bad weather, degrades the visibility of the scene drastically. Degradation of scene visibility varies with respect to the transmission coefficient/map (Tc) of the scene. Estimation of accurate Tc is ke... 详细信息
来源: 评论
Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks
Trainable Spectrally Initializable Matrix Transformations in...
收藏 引用
International Conference on pattern recognition
作者: Michele Alberti Angela Botros Narayan Schutz Rolf Ingold Marcus Liwicki Mathias Seuret Document Image and Voice Analysis Group (DIVA) University of Fribourg Switzerland V7 Ltd London United Kingdom ARTORG Center for Biomedical Engineering Research University of Bern Switzerland EISLAB Machine Learning Luleå University of Technology Sweden Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany
In this work, we introduce a new architectural component to Neural Network (NN), i.e., trainable and spectrally initializable matrix transformations on feature maps. While previous literature has already demonstrated ... 详细信息
来源: 评论
ICDAR2019 competition on recognition of early Indian printed documents-REID2019  15
ICDAR2019 competition on recognition of early Indian printed...
收藏 引用
15th IAPR International Conference on Document analysis and recognition, ICDAR 2019
作者: Clausner, Christian Antonacopoulos, Apostolos Derrick, Tom Pletschacher, Stefan Pattern Recognition and Image Analysis Research Lab School of Computing Science and Engineering University of Salford Greater ManchesterM5 4WT United Kingdom Digital Scholarship British Library LondonNW1 2DB United Kingdom
This paper presents an objective comparative evaluation of page analysis and recognition methods for historical documents with text mainly in Bengali language and script. It describes the competition rules, dataset, a... 详细信息
来源: 评论
Are pathologist-defined labels reproducible? Comparison of the TUPAC16 mitotic figure dataset with an alternative set of labels
arXiv
收藏 引用
arXiv 2020年
作者: Bertram, Christof A. Veta, Mitko Marzahl, Christian Stathonikos, Nikolas Maier, Andreas Klopfleisch, Robert Aubreville, Marc Institute of Veterinary Pathology Freie Universitt Berlin Berlin Germany Medical Image Analysis Group Eindhoven University of Technology Eindhoven Netherlands Pattern Recognition Lab Computer Science Friedrich-Alexander-Universitt Erlangen-Nrnberg Erlangen Germany Department of Pathology University Medical Center Utrecht Utrecht Netherlands
Pathologist-defined labels are the gold standard for histopathological data sets, regardless of well-known limitations in consistency for some tasks. To date, some datasets on mitotic figures are available and were us... 详细信息
来源: 评论
A Novel Baseline Estimation Technique for Geometric Correction of Historical Arabic Documents Based on Voronoi Diagrams
A Novel Baseline Estimation Technique for Geometric Correcti...
收藏 引用
International Conference on pattern recognition Systems
作者: Ali Dulla Apostolos Antonacopoulos School of Computing Science and Engineering University of Salford Greater Manchester MS 4WT United Kingdom Pattern Recognition and Image Analysis (PRImA) Research Lab School of Computing Science and Engineering University of Salford United Kingdom
Since Arabic writing has a robust baseline, several state-of-the-art recognition systems for handwritten Arabic produce use of baseline-dependent characteristics. For modem Arabic documents, the baseline can be detect... 详细信息
来源: 评论
Medical history predicts phenome-wide disease onset and enables the rapid response to emerging health threats (vol 16, 585, 2025)
收藏 引用
NATURE COMMUNICATIONS 2025年 第1期16卷 1-15页
作者: Steinfeldt, Jakob Wild, Benjamin Buergel, Thore Pietzner, Maik Upmeier zu Belzen, Julius Vauvelle, Andre Hegselmann, Stefan Denaxas, Spiros Hemingway, Harry Langenberg, Claudia Landmesser, Ulf Deanfield, John Eils, Roland Department of Cardiology Angiology and Intensive Care Medicine Deutsches Herzzentrum der Charité (DHZC) Berlin Germany Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Klinik/Centrum Berlin Germany Computational Medicine Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany Friede Springer Cardiovascular Prevention Center@Charite Charite - University Medicine Berlin Berlin Germany Institute of Cardiovascular Sciences University College London London UK Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany DZHK (German Centre for Cardiovascular Research) Partner Site Berlin Berlin Berlin Germany MRC Epidemiology Unit Institute of Metabolic Science University of Cambridge Cambridge UK Precision Health University Research Institute Queen Mary University of London and Barts NHS Trust London UK Center for Digital Health Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany Health Data Science Unit Heidelberg University Hospital and BioQuant Heidelberg Germany Institute of Health Informatics University College London London UK British Heart Foundation Data Science Centre London UK Health Data Research UK London UK National Institute for Health Research Biomedical Research Centre at University College London Hospitals London UK Institute for Medical Engineering and Science Massachusetts Institute of Technology Massachusetts USA Pattern Recognition and Image Analysis Lab University of Münster Münster Germany
The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 17...
来源: 评论
labeling, Cutting, Grouping: An Efficient Text Line Segmentation Method for Medieval Manuscripts
Labeling, Cutting, Grouping: An Efficient Text Line Segmenta...
收藏 引用
International Conference on Document analysis and recognition
作者: Michele Alberti Lars Vögtlin Vinaychandran Pondenkandath Mathias Seuret Rolf Ingold Marcus Liwicki Document Image and Voice Analysis Group (DIVA) University of Fribourg Switzerland University of Fribourg Fribourg Switzerland Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Machine Learning Group Luleå University of Technology Sweden
This paper introduces a new way for text-line extraction by integrating deep-learning based pre-classification and state-of-the-art segmentation methods. Text-line extraction in complex handwritten documents poses a s... 详细信息
来源: 评论
Mitosis domain generalization in histopathology images - The MIDOG challenge
arXiv
收藏 引用
arXiv 2022年
作者: Aubreville, Marc Stathonikos, Nikolas Bertram, Christof A. Klopfleisch, Robert ter Hoeve, Natalie Ciompi, Francesco Wilm, Frauke Marzahl, Christian Donovan, Taryn A. Maier, Andreas Breen, Jack Ravikumar, Nishant Chung, Youjin Park, Jinah Nateghi, Ramin Pourakpour, Fattaneh Fick, Rutger H.J. Hadj, Saima Ben Jahanifar, Mostafa Rajpoot, Nasir Dexl, Jakob Wittenberg, Thomas Kondo, Satoshi Lafarge, Maxime W. Koelzer, Viktor H. Liang, Jingtang Wang, Yubo Long, Xi Liu, Jingxin Razavi, Salar Khademi, April Yang, Sen Wang, Xiyue Veta, Mitko Breininger, Katharina Technische Hochschule Ingolstadt Ingolstadt Germany Pathology Department UMC Utrecht Netherlands Institute of Pathology University of Veterinary Medicine Vienna Austria Institute of Veterinary Pathology Freie Universität Berlin Berlin Germany Computational Pathology Group Radboud UMC Nijmegen Netherlands Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany Department of Anatomic Pathology Schwarzman Animal Medical Center New York United States CISTIB Center for Computational Imaging and Simulation Technologies in Biomedicine School of Computing University of Leeds United Kingdom Korea Advanced Institute of Science and Technology Daejeon Korea Republic of Electrical and Electronics Engineering Department Shiraz University of Technology Shiraz Iran Tehran Iran Tribun Health Paris France Tissue Image Analytics Centre Department of Computer Science University of Warwick United Kingdom Fraunhofer-Institute for Integrated Circuits IIS Erlangen Germany Muroran Institute of Technology Hokkaido Japan Department of Pathology and Molecular Pathology University Hospital University of Zurich Zurich Switzerland School of Life Science and Technology Xidian University Shannxi China Histo Pathology Diagnostic Center Shanghai China Xi'an Jiaotong-Liverpool University Suzhou China Electrical Computer and Biomedical Engineering Ryerson University TorontoON Canada Tencent AI Lab Shenzhen518057 China College of Computer Science Sichuan University Chengdu610065 China Medical Image Analysis Group TU Eindhoven Netherlands Department of Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Germany
The density of mitotic figures within tumor tissue is known to be highly correlated with tumor proliferation and thus is an important marker in tumor grading. recognition of mitotic figures by pathologists is known to... 详细信息
来源: 评论
Author Correction: A comprehensive multi-domain dataset for mitotic figure detection
收藏 引用
Scientific data 2024年 第1期11卷 717页
作者: Marc Aubreville Frauke Wilm Nikolas Stathonikos Katharina Breininger Taryn A Donovan Samir Jabari Mitko Veta Jonathan Ganz Jonas Ammeling Paul J van Diest Robert Klopfleisch Christof A Bertram Technische Hochschule Ingolstadt Ingolstadt Germany. marc.aubreville@thi.de. Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany. Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany. Department of Pathology University Medical Center Utrecht Utrecht The Netherlands. Schwarzman Animal Medical Center New York USA. Department of Neuropathology Universitätsklinikum Erlangen Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany. Medical Image Analysis Group Eindhoven University of Technology Eindhoven the Netherlands. Technische Hochschule Ingolstadt Ingolstadt Germany. Institute of Veterinary Pathology Freie Universität Berlin Berlin Germany. Institute of Pathology University of Veterinary Medicine Vienna Vienna Austria.
来源: 评论