咨询与建议

限定检索结果

文献类型

  • 163 篇 会议
  • 18 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 186 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 104 篇 工学
    • 68 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 27 篇 信息与通信工程
    • 22 篇 光学工程
    • 19 篇 控制科学与工程
    • 15 篇 机械工程
    • 11 篇 电气工程
    • 9 篇 交通运输工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 生物工程
    • 6 篇 化学工程与技术
    • 5 篇 电子科学与技术(可...
    • 4 篇 土木工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
  • 63 篇 理学
    • 47 篇 数学
    • 20 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 3 篇 化学
    • 3 篇 系统科学
    • 1 篇 大气科学
  • 17 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学

主题

  • 47 篇 pattern recognit...
  • 34 篇 image processing
  • 26 篇 image segmentati...
  • 17 篇 shape
  • 16 篇 automation
  • 15 篇 computer vision
  • 15 篇 image reconstruc...
  • 13 篇 image analysis
  • 12 篇 cameras
  • 8 篇 ceramics
  • 7 篇 mobile robots
  • 7 篇 computer graphic...
  • 7 篇 feature extracti...
  • 7 篇 robustness
  • 6 篇 robot sensing sy...
  • 6 篇 visualization
  • 6 篇 biomedical imagi...
  • 6 篇 image color anal...
  • 6 篇 pattern analysis
  • 6 篇 principal compon...

机构

  • 21 篇 pattern recognit...
  • 15 篇 pattern recognit...
  • 9 篇 pattern recognit...
  • 6 篇 institute for co...
  • 6 篇 institute of com...
  • 5 篇 image processing...
  • 5 篇 faculty of compu...
  • 4 篇 institute of com...
  • 4 篇 pattern recognit...
  • 4 篇 vienna universit...
  • 4 篇 institute for co...
  • 4 篇 pattern recognit...
  • 4 篇 pattern recognit...
  • 3 篇 institute for co...
  • 3 篇 pattern recognit...
  • 3 篇 pattern recognit...
  • 3 篇 the institute of...
  • 3 篇 image processing...
  • 2 篇 pattern recognit...
  • 2 篇 computational vi...

作者

  • 29 篇 kropatsch walter...
  • 15 篇 r. sablatnig
  • 15 篇 sablatnig robert
  • 12 篇 m. kampel
  • 12 篇 robert sablatnig
  • 11 篇 h. bischof
  • 11 篇 bischof horst
  • 11 篇 sergiu nedevschi
  • 10 篇 haxhimusa yll
  • 9 篇 kampel martin
  • 8 篇 walter g. kropat...
  • 6 篇 kampel m.
  • 5 篇 menard christian
  • 5 篇 g. langs
  • 5 篇 langs georg
  • 4 篇 glantz roland
  • 4 篇 walter kropatsch
  • 4 篇 thirde david
  • 4 篇 ion adrian
  • 4 篇 lettner martin

语言

  • 183 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Image Processing Group"
186 条 记 录,以下是1-10 订阅
排序:
Deep Learning in Palmprint recognition-A Comprehensive Survey
arXiv
收藏 引用
arXiv 2025年
作者: Gao, Chengrui Yang, Ziyuan Jia, Wei Leng, Lu Zhang, Bob Teoh, Andrew Beng Jin College of Computer Science Sichuan University Chengdu610065 China Singapore School of Computer and Information Hefei University of Technology Hefei China Jiangxi Provincial Key Laboratory of Image Processing and Pattern Recognition Nanchang Hangkong University Nanchang China Pattern Analysis and Machine Intelligence Group Department of Computer and Information Science University of Macau Taipa China School of Electrical and Electronic Engineering College of Engineering Yonsei University Seoul Korea Republic of
Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse scenarios. Traditional handcrafted methods for palmprint recognition often fall short in representation capability, as t... 详细信息
来源: 评论
Semi-automatic tracking of markers in facial palsy
Semi-automatic tracking of markers in facial palsy
收藏 引用
21st International Conference on pattern recognition, ICPR 2012
作者: Limbeck, Philip Kropatsch, Walter G. Haxhimusa, Yll Vienna University of Technology Pattern Recognition and Image Processing Group Austria
We introduce a semi-automatic tracking method that can be utilized for the analysis of facial markers in the medical condition of facial palsy. Tracking of markers will help medical physicians in evaluating this medic... 详细信息
来源: 评论
Reducing the Computational Complexity of the Eccentricity Transform of a Tree  13th
Reducing the Computational Complexity of the Eccentricity...
收藏 引用
13th IAPR-TC-15 International Workshop on Graph-Based Representations in pattern recognition, GbRPR 2023
作者: Banaeyan, Majid Kropatsch, Walter G. Pattern Recognition and Image Processing Group TU Wien Vienna Austria
This paper proposes a novel approach to reduce the computational complexity of the eccentricity transform (ECC) for graph-based representation and analysis of shapes. The ECC assigns to each point within a shape its g... 详细信息
来源: 评论
Data graph formulation as the minimum-weight maximum-entropy problem  10
Data graph formulation as the minimum-weight maximum-entropy...
收藏 引用
10th IAPR-TC-15 International Workshop on Graph-Based Representations in pattern recognition, GbRPR 2015
作者: De Sousa, Samuel Kropatsch, Walter G. Pattern Recognition and Image Processing Group Vienna University of Technology Vienna Austria
Consider a point-set coming from an object which was sampled using a digital sensor (depth range, camera, etc). We are interested in finding a graph that would represent that point-set according to some properties. Su... 详细信息
来源: 评论
Estimation of distribution algorithm for the Max-Cut problem
Estimation of distribution algorithm for the Max-Cut problem
收藏 引用
9th IAPR-TC-15 International Workshop on Graph-Based Representations in pattern recognition, GbRPR 2013
作者: De Sousa, Samuel Haxhimusa, Yll Kropatsch, Walter G. Vienna University of Technology Pattern Recognition and Image Processing Group Vienna Austria
In this paper, we investigate the Max-Cut problem and propose a probabilistic heuristic to address its classic and weighted version. Our approach is based on the Estimation of Distribution Algorithm (EDA) that creates... 详细信息
来源: 评论
Structural cues in 2D tracking: Edge lengths vs. barycentric coordinates  1
收藏 引用
18th Iberoamerican Congress on pattern recognition, CIARP 2013
作者: Artner, Nicole M. Kropatsch, Walter G. Vienna University of Technology Pattern Recognition and Image Processing Group Vienna Austria
Graph models offer high representational power and useful structural cues. Unfortunately, tracking objects by matching graphs over time is in general NP-hard. Simple appearance-based trackers are able to find temporal...
来源: 评论
On the evaluation of graph centrality for shape matching
On the evaluation of graph centrality for shape matching
收藏 引用
9th IAPR-TC-15 International Workshop on Graph-Based Representations in pattern recognition, GbRPR 2013
作者: De Sousa, Samuel Artner, Nicole M. Kropatsch, Walter G. Vienna University of Technology Pattern Recognition and Image Processing Group Vienna Austria
Graph centrality has been extensively applied in Social Network Analysis to model the interaction of actors and the information flow inside a graph. In this paper, we investigate the usage of graph centralities in the... 详细信息
来源: 评论
Removing Redundancies in Binary images  2nd
Removing Redundancies in Binary Images
收藏 引用
2nd International Conference on Intelligent Systems and pattern recognition, ISPR 2022
作者: Banaeyan, Majid Batavia, Darshan Kropatsch, Walter G. Pattern Recognition and Image Processing Group 193/03 TU Wien Vienna Austria
Every day a huge amount of digital data is generated. processing such big data encourages efficient data structure and parallelized operations. In this regard, this paper proposes a graph-based method reducing the mem... 详细信息
来源: 评论
Parallel O(log(n) ) Computation of the Adjacency of Connected Components  3rd
Parallel O(log(n) ) Computation of the Adjacency of Conne...
收藏 引用
3rd International Conference on pattern recognition and Artificial Intelligence, ICPRAI 2022
作者: Banaeyan, Majid Kropatsch, Walter G. TU Wien Pattern Recognition and Image Processing Group 193/03 Vienna Austria
Connected Component Labeling (CCL) is a fundamental task in pattern recognition and image processing algorithms. It groups the pixels into regions, such that adjacent pixels have the same label while pixels belonging ... 详细信息
来源: 评论
Pyramidal Connected Component Labeling by Irregular Graph Pyramid  5
Pyramidal Connected Component Labeling by Irregular Graph Py...
收藏 引用
5th International Conference on pattern recognition and image Analysis, IPRIA 2021
作者: Banaeyan, Majid Kropatsch, Walter G. Vienna University of Technology Pattern Recognition and Image Processing Group 193/03 Vienna Austria
This paper presents a new logarithmic-time algorithm which simultaneously assigns labels to all connected components of a binary image in parallel. The irregular graph pyramid of an input binary image is constructed b... 详细信息
来源: 评论