咨询与建议

限定检索结果

文献类型

  • 163 篇 会议
  • 18 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 186 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 104 篇 工学
    • 68 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 27 篇 信息与通信工程
    • 22 篇 光学工程
    • 19 篇 控制科学与工程
    • 15 篇 机械工程
    • 11 篇 电气工程
    • 9 篇 交通运输工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 生物工程
    • 6 篇 化学工程与技术
    • 5 篇 电子科学与技术(可...
    • 4 篇 土木工程
    • 3 篇 仪器科学与技术
    • 3 篇 建筑学
    • 3 篇 航空宇航科学与技...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 动力工程及工程热...
  • 63 篇 理学
    • 47 篇 数学
    • 20 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 9 篇 生物学
    • 3 篇 化学
    • 3 篇 系统科学
    • 1 篇 大气科学
  • 17 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 医学

主题

  • 47 篇 pattern recognit...
  • 34 篇 image processing
  • 26 篇 image segmentati...
  • 17 篇 shape
  • 16 篇 automation
  • 15 篇 computer vision
  • 15 篇 image reconstruc...
  • 13 篇 image analysis
  • 12 篇 cameras
  • 8 篇 ceramics
  • 7 篇 mobile robots
  • 7 篇 computer graphic...
  • 7 篇 feature extracti...
  • 7 篇 robustness
  • 6 篇 robot sensing sy...
  • 6 篇 visualization
  • 6 篇 biomedical imagi...
  • 6 篇 image color anal...
  • 6 篇 pattern analysis
  • 6 篇 principal compon...

机构

  • 21 篇 pattern recognit...
  • 15 篇 pattern recognit...
  • 9 篇 pattern recognit...
  • 6 篇 institute for co...
  • 6 篇 institute of com...
  • 5 篇 image processing...
  • 5 篇 faculty of compu...
  • 4 篇 institute of com...
  • 4 篇 pattern recognit...
  • 4 篇 vienna universit...
  • 4 篇 institute for co...
  • 4 篇 pattern recognit...
  • 4 篇 pattern recognit...
  • 3 篇 institute for co...
  • 3 篇 pattern recognit...
  • 3 篇 pattern recognit...
  • 3 篇 the institute of...
  • 3 篇 image processing...
  • 2 篇 pattern recognit...
  • 2 篇 computational vi...

作者

  • 29 篇 kropatsch walter...
  • 15 篇 r. sablatnig
  • 15 篇 sablatnig robert
  • 12 篇 m. kampel
  • 12 篇 robert sablatnig
  • 11 篇 h. bischof
  • 11 篇 bischof horst
  • 11 篇 sergiu nedevschi
  • 10 篇 haxhimusa yll
  • 9 篇 kampel martin
  • 8 篇 walter g. kropat...
  • 6 篇 kampel m.
  • 5 篇 menard christian
  • 5 篇 g. langs
  • 5 篇 langs georg
  • 4 篇 glantz roland
  • 4 篇 walter kropatsch
  • 4 篇 thirde david
  • 4 篇 ion adrian
  • 4 篇 lettner martin

语言

  • 183 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"机构=Pattern Recognition and Image Processing Group"
186 条 记 录,以下是81-90 订阅
排序:
A Portable High Resolution Imaging System for Digitizing Large-Surface Paintings
A Portable High Resolution Imaging System for Digitizing Lar...
收藏 引用
Congress on image and Signal processing, CISP
作者: Florian Kleber Robert Sablatnig Pattern Recognition and Image Processing Group Institute for Computer Aided Automation University of Technology Vienna Austria
Digitizing large-surface paintings at a high resolution in museums is necessary in the field of painting conservation to document the actual condition of paintings (e.g. colour measurements) and for analysis (e.g. to ... 详细信息
来源: 评论
Multi-Class Segmentation for Traffic Scenarios at Over 50 FPS
Multi-Class Segmentation for Traffic Scenarios at Over 50 FP...
收藏 引用
IEEE Intelligent Vehicles Symposium
作者: Arthur D. Costea Sergiu Nedevschi Image Processing and Pattern Recognition Group Computer Science Department Technical University of Cluj-Napoca Romania
Multi-class segmentation assigns a class label to each pixel in an image. It represents a significant task for the semantic understanding of images and has received plentiful attention over the last years. The current... 详细信息
来源: 评论
Moving rigid objects segmentation in 3D dynamic traffic scenes using a stereovision system
Moving rigid objects segmentation in 3D dynamic traffic scen...
收藏 引用
IEEE International Conference on Intelligent Computer Communication and processing (ICCP)
作者: Catalin Golban Sergiu Nedevschi Computer Science Department Technical University Image Processing and Pattern Recognition Group Cluj-Napoca Romania
This paper proposes a novel method for detecting the moving vehicles in dynamic urban traffic scenes using a stereo camera. Relying on the fact that a set of feature points on a rigid 3D scene object are staying in a ... 详细信息
来源: 评论
Single landmark based self-localization of mobile robots
Single landmark based self-localization of mobile robots
收藏 引用
3rd Canadian Conference on Computer and Robot Vision, CRV 2006
作者: Bais, Abdul Sablatnig, Robert Gu, Jason Institute of Computer Technology Vienna University of Technology Vienna Austria Pattern Recognition and Image Processing Group Institute of Computer Aided Automation Vienna University of Technology Vienna Austria Robotics Research Group Department of Electrical and Computer Engineering Dalhousie University Halifax Canada
In this paper we discuss landmark based absolute localization of tiny autonomous mobile robots in a known environment. Landmark features are naturally occurring as it is not allowed to modify the environment with spec... 详细信息
来源: 评论
Sparse MRF appearance models for fast anatomical structure localisation
Sparse MRF appearance models for fast anatomical structure l...
收藏 引用
2007 18th British Machine Vision Conference, BMVC 2007
作者: Donner, René Mičušsík, Branislav Langs, Georg Bischof, Horst Institute for Computer Graphics and Vision Graz University of Technology Austria Pattern Recognition and Image Processing Group Vienna University of Technology Austria GALEN Group Laboratoire de Mathématiques Appliquées Aux Systèmes Ecole Centrale de Paris France
image segmentation methods like active shape models, active appearance models or snakes require an initialisation that guarantees a considerable overlap with the object to be segmented. In this paper we present an app... 详细信息
来源: 评论
Color-based and context-aware skin detection for online video annotation
Color-based and context-aware skin detection for online vide...
收藏 引用
IEEE Workshop on Multimedia Signal processing
作者: Christian Liensberger Julian Stottinger Martin Kampel Institute of Computer Aided Automation Pattern Recognition and Image Processing Group University of Technology Vienna Austria
By analyzing the low level features of images only, skin detection in visual data cannot be solved. To compensate for this major drawback of many approaches, we combine a state of the art recognition algorithm with co... 详细信息
来源: 评论
Exponential image Enhancement in Daytime Fog Conditions
Exponential Image Enhancement in Daytime Fog Conditions
收藏 引用
17th International IEEE Conference on Intelligent Transportation Systems & The Asia-Pacific Council on Systems Engineering Conference 2014
作者: Mihai Negru Sergiu Nedevschi Radu Ioan Peter Image Processing and Pattern Recognition Group Computer Science DepartmentTechnical University of Cluj-Napoca head of the Image Processing and Pattern Recognition Group Computer Science DepartmentTechnical University of Cluj-Napoca Mathematics Department Technical University of Cluj-Napoca
The images captured in fog conditions have degraded contrast,that makes current image processing applications sensitive and error *** propose in this paper an efficient single image enhancement algorithm suitable for ... 详细信息
来源: 评论
Propagation of uncertainty in landmark based self-localization of autonomous mobile robots
Propagation of uncertainty in landmark based self-localizati...
收藏 引用
10th IAPR Conference on Machine Vision Applications, MVA 2007
作者: Bais, Abdul Sablatnig, Robert Khawaja, Yahya M. Novak, Gregor Institute of Computer Technology Vienna University of Technology Vienna Austria Pattern Recognition and Image Processing Group Institute of Computer Aided Automation ViennaUniversity of Technology Vienna Austria Department of Electrical Engineering NWFP University of Engineering and Technology Peshawar Pakistan
This paper presents uncertainty propagation in landmark based position estimation methods. Analysis of two methods has been carried out where robot position is estimated by detecting one or two globally distinct featu... 详细信息
来源: 评论
Evaluation of object tracking for aircraft activity surveillance
Evaluation of object tracking for aircraft activity surveill...
收藏 引用
Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance
作者: D. Thirde M. Borg J. Aguilera J. Ferryman K. Baker M. Kampel Computational Vision Group University of Reading UK Pattern Recognition and Image Processing Group University of Technology Vienna Austria
This paper presents the evaluation of an object tracking system that has been developed in the context of aircraft activity monitoring. The overall tracking system comprises three main modules - motion detection, obje... 详细信息
来源: 评论
Minimizing the topological structure of line images  7th
Minimizing the topological structure of line images
收藏 引用
7th Joint IAPR International Workshop on Structural and Syntactic pattern recognition, SSPR 1998 and 2nd International Workshop on Statistical Techniques in pattern recognition, SPR 1998
作者: Kropatsch, Walter G. Burge, Mark Vienna University of Technology Institute of Automation 183/2 Pattern Recognition and Image Processing Group Treitlstr.3 WienA-1040 Austria Johannes Kepler University Institute of Systems Science Computer Vision Laboratory LinzA-4040 Austria
We present a new algorithm based on Dual Graph Contraction (DGC) to transform the Run Graph into its Minimum Line Property Preserving (MLPP) form which, when implemented in parallel, requires O(log(longestcurve)) step... 详细信息
来源: 评论