咨询与建议

限定检索结果

文献类型

  • 97 篇 会议
  • 54 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 152 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 128 篇 工学
    • 86 篇 计算机科学与技术...
    • 77 篇 软件工程
    • 37 篇 信息与通信工程
    • 30 篇 光学工程
    • 21 篇 电子科学与技术(可...
    • 20 篇 控制科学与工程
    • 14 篇 生物医学工程(可授...
    • 12 篇 生物工程
    • 11 篇 电气工程
    • 10 篇 机械工程
    • 9 篇 航空宇航科学与技...
    • 7 篇 力学(可授工学、理...
    • 7 篇 建筑学
    • 5 篇 仪器科学与技术
    • 5 篇 土木工程
    • 3 篇 化学工程与技术
  • 89 篇 理学
    • 61 篇 数学
    • 34 篇 物理学
    • 17 篇 统计学(可授理学、...
    • 12 篇 生物学
    • 3 篇 化学
    • 3 篇 天文学
    • 3 篇 系统科学
  • 19 篇 管理学
    • 12 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 5 篇 医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 临床医学
    • 4 篇 药学(可授医学、理...
  • 3 篇 法学
    • 3 篇 社会学
  • 3 篇 军事学
  • 1 篇 经济学
  • 1 篇 文学
  • 1 篇 艺术学

主题

  • 4 篇 motion planning
  • 4 篇 image segmentati...
  • 4 篇 target tracking
  • 4 篇 pattern recognit...
  • 3 篇 image enhancemen...
  • 3 篇 image reconstruc...
  • 3 篇 object recogniti...
  • 2 篇 mixture models
  • 2 篇 knowledge based ...
  • 2 篇 object detection
  • 2 篇 support vector m...
  • 2 篇 compressed sensi...
  • 2 篇 medical imaging
  • 2 篇 pixel
  • 2 篇 pattern matching
  • 2 篇 neural networks
  • 2 篇 face recognition
  • 2 篇 lifting scheme
  • 2 篇 image coding
  • 2 篇 image processing

机构

  • 10 篇 institute of ima...
  • 7 篇 state key lab. o...
  • 5 篇 state key lab. f...
  • 4 篇 key laboratory o...
  • 4 篇 institute for pa...
  • 3 篇 lab. for image p...
  • 3 篇 college of life ...
  • 3 篇 inst. of pattern...
  • 3 篇 state key lab. f...
  • 3 篇 shanghai jiao to...
  • 3 篇 artificial intel...
  • 2 篇 state education ...
  • 2 篇 nanchang hangkon...
  • 2 篇 institute of ima...
  • 2 篇 institute of med...
  • 2 篇 institute of ima...
  • 2 篇 pattern recognit...
  • 2 篇 pattern recognit...
  • 2 篇 national institu...
  • 2 篇 department of im...

作者

  • 9 篇 ding mingyue
  • 9 篇 liu jian
  • 8 篇 cai chao
  • 8 篇 yang jie
  • 7 篇 cao zhiguo
  • 6 篇 maier andreas
  • 6 篇 zhang tianxu
  • 5 篇 zhang tian-xu
  • 5 篇 tian jinwen
  • 5 篇 tian jin-wen
  • 5 篇 zhihua chen
  • 4 篇 jung keechul
  • 4 篇 jie yang
  • 4 篇 wang yuehuan
  • 4 篇 huang yixing
  • 4 篇 zhou chengping
  • 4 篇 guo ping
  • 4 篇 huang xiaolin
  • 3 篇 haxhimusa yll
  • 3 篇 han junghyun

语言

  • 139 篇 英文
  • 12 篇 中文
  • 1 篇 日文
检索条件"机构=Pattern Recognition and Image Processing Lab."
152 条 记 录,以下是31-40 订阅
排序:
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
Local topology preservation for vascular centerline matching using a hybrid mixture model
Local topology preservation for vascular centerline matching...
收藏 引用
IEEE Symposium on Nuclear Science (NSS/MIC)
作者: Siming Bayer Zhiwei Zhai Maddalena Strumia Xiaoguang Tong Ying Gao Marius Staring Berend Stoel Martin Ostermeier Rebecca Fahrig Arya Nabavi Andreas Maier Nishant Ravikumar Pattern Recognition Lab Friedrich-Alexander Universtiy Erlangen Germany Division of Image Processing Leiden University Medical Center Leiden Netherlands Siemens Healthcare GmbH Forchheim Germany Tianjin Huanhu Hospital Tianjin China Siemens Healthineers Ltd Beijing China Department of Neurosurgery Nordstadt Hospital KRH Hannover Germany
Non-rigid registration is essential for a wide range of clinical applications, such as intraoperative image-guidance and postoperative follow-up assessment, and longitudinal image analysis for disease diagnosis and mo... 详细信息
来源: 评论
Overexposure correction by mixed one-bit compressive sensing for C-Arm CT  1
收藏 引用
Workshops on image processing for the medicine, 2017
作者: Huang, Xiaolin Xia, Yan Huang, Yixing Hornegger, Joachim Maier, Andreas Pattern Recognition Lab Friedrich-Alexander-University Erlangen-Nürnberg Germany Department of Radiology Stanford University United States Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
This paper proposes a novel method to deal with overexposure for C-arm CT reconstruction. The proposed method is based on recent progress of one bit compressive sensing (1bit-CS), which is to recover sparse signals fr... 详细信息
来源: 评论
REFUGE2 CHALLENGE: A TREASURE TROVE FOR MULTI-DIMENSION ANALYSIS AND EVALUATION IN GLAUCOMA SCREENING
arXiv
收藏 引用
arXiv 2022年
作者: Fang, Huihui Li, Fei Wu, Junde Fu, Huazhu Sun, Xu Son, Jaemin Yu, Shuang Zhang, Menglu Yuan, Chenglang Bian, Cheng Lei, Baiying Zhao, Benjian Xu, Xinxing Li, Shaohua Fumero, Francisco Sigut, José Almubarak, Haidar Bazi, Yakoub Guo, Yuanhao Zhou, Yating Baid, Ujjwal Innani, Shubham Guo, Tianjiao Yang, Jie Orlando, José Ignacio Bogunović, Hrvoje Zhang, Xiulan Xu, Yanwu The REFUGE2 Challenge Australia State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat-Sen University Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science Guangzhou China Intelligent Healthcare Unit Baidu Inc. Beijing China The Institute of High Performance Computing Agency for Science Technology and Research Singapore Yatiris Group PLADEMA Institute CONICET UNICEN Tandil Argentina Christian Doppler Lab for Artificial Intelligence in Retina Department of Ophthalmology and Optometry Medical University of Vienna Vienna Austria VUNO Inc Seoul Korea Republic of Tencent HealthCare Tencent Shenzhen China Computer Vision Institute College of Computer Science and Software Engineering of Shenzhen University Shenzhen China School of Biomedical Engineering Health Science Center Shenzhen University China Xiaohe Healthcare ByteDance Guangdong Guangzhou510000 China School of Biomedical Engineering Shenzhen University China College of Computer Science & Software Engineering Shenzhen University China Department of Computer Science and Systems Engineering Universidad de La Laguna Spain Saudi Electronic University Saudi Arabia King Saud University Saudi Arabia Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing China SGGS Institute of Engineering and Technology India Institute of Medical Robotics Shanghai Jiao Tong University China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
With the rapid development of artificial intelligence (AI) in medical image processing, deep learning in color fundus photography (CFP) analysis is also evolving. Although there are some open-source, lab.led datasets ... 详细信息
来源: 评论
PILAE: A non-gradient descent learning scheme for deep feedforward neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Guo, Ping Wang, Ke Zhou, XiuLing The Image Processing & Pattern Recognition Lab. School of Systems Science Beijing Normal University Beijing100875 China The School of Information Engineering Zhengzhou University Zhengzhou450001 China The Department of Technology and Industry Development Beijing City University Beijing100083 China
In this work, a non-gradient descent learning (NGDL) scheme was proposed for deep feedforward neural networks (DNN). It is known that an autoencoder can be used as the building blocks of the multi-layer perceptron (ML... 详细信息
来源: 评论
MMFNet: A Multi-modality MRI Fusion Network for Segmentation of Nasopharyngeal Carcinoma
arXiv
收藏 引用
arXiv 2018年
作者: Chen, Huai Qi, Yuxiao Yin, Yong Li, Tengxiang Liu, Xiaoqing Li, Xiuli Gong, Guanzhong Wang, Lisheng Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China Shandong Cancer Hospital Affiliated to Shandong University Jinan250117 China Deepwise AI Lab China
Segmentation of nasopharyngeal carcinoma (NPC) from Magnetic Resonance images (MRI) is a crucial prerequisite for NPC radiotherapy. However, manually segmenting of NPC is time-consuming and lab.r-intensive. Additional... 详细信息
来源: 评论
A novel panoramic image stitching algorithm based on ORB
A novel panoramic image stitching algorithm based on ORB
收藏 引用
2017 IEEE International Conference on Applied System Innovation, ICASI 2017
作者: Wang, Maosen Niu, Shaozhang Yang, Xuan Beijing Key Lab of Intelligent Telecommunication Software and Multimedia Beijing University of Posts and Telecommunications Beijing100876 China Institute of Image Processing and Pattern Recognition North China University of Technology No.5 Jinyuanzhuang Road Shijingshan District Beijing China
image stitching technique is to integrate multiple images with overlapping regions into a complete image with a wide viewing angle, less distortion, and no obvious suture. image stitching could be used for global posi... 详细信息
来源: 评论
Scale-space anisotropic total variation for limited angle tomography
arXiv
收藏 引用
arXiv 2017年
作者: Huang, Yixing Taubmann, Oliver Huang, Xiaolin Haase, Viktor Lauritsch, Guenter Maier, Andreas Pattern Recognition Lab Friedrich-Alexander-University Erlangen-Nuremberg Erlangen Germany Pattern Recognition Lab FriedrichAlexander-University Erlangen-Nuremberg Erlangen Germany Erlangen Germany Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Siemens Healthcare GmbH Forchheim Germany Department of Radiology University of Utah Salt Lake CityUT United States
This paper addresses streak reduction in limited angle tomography. Although the iterative reweighted total variation (wTV) algorithm reduces small streaks well, it is rather inept at eliminating large ones since total... 详细信息
来源: 评论
Mixed one-bit compressive sensing with application to overexposure correction for CT reconstruction
arXiv
收藏 引用
arXiv 2017年
作者: Huang, Xiaolin Xia, Yan Shi, Lei Huang, Yixing Yan, Ming Hornegger, Joachim Maier, Andreas Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Department of Radiology Stanford University CA United States School of Mathematical Sciences Fudan University Shanghai China Pattern Recognition Lab of Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Department of Computational Mathematics Science and Engineering Michigan State University MI United States
When a measurement falls outside the quantization or measurable range, it becomes saturated and cannot be used in classical reconstruction methods. For example, in C-arm angiography systems, which provide projection r... 详细信息
来源: 评论
Unsupervised feature selection algorithm based on sparse representation  3
Unsupervised feature selection algorithm based on sparse rep...
收藏 引用
2016 3rd International Conference on Systems and Informatics, ICSAI 2016
作者: Cui, Guoqing Yang, Jie Zareapoor, Masoumeh Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Minhang District Shanghai China Jiechen Wang Complex Network and Control Lab Shanghai Jiao Tong University Minhang District Shanghai China
Feature selection, as a preprocessing step to machine learning, plays a pivotal role in removing irrelevant data, reducing dimensionality and improving performance evaluations. Recent years, sparse representation has ... 详细信息
来源: 评论