A novel wideband 5.8GHz CPW-fed antenna is presented for Radio frequency identification (RFID) tag. Four U-shaped and four L-shaped branches are used as additional resonators to achieve wideband operation. The propose...
详细信息
A novel wideband 5.8GHz CPW-fed antenna is presented for Radio frequency identification (RFID) tag. Four U-shaped and four L-shaped branches are used as additional resonators to achieve wideband operation. The proposed antenna was analyzed numerically using the Method of moment (MOM) and the Finite element method (FEM). With the antenna size limited to $30\times 30 \text{mm}^{2}$ , the −10dB bandwidth obtained by MOM is 3.235GHz (5.765∼9GHz) and the −9.5dB band-width obtained by FEM is 2.74GHz (5.32∼8.06GHz), corresponding to 55.7% and 47.2% of the center frequency 5.8GHz respectively. Moreover, the simulated results show that the proposed antenna has gain of more than 4.8dBi and the radiation pattern is nearly omnidirectional in the H-plane. The measured −10dB bandwidth is 2.68GHz (5.63GHz∼8.31GHz), 46.2% of the 5.8GHz frequency. Furthermore, there are three measured resonant frequencies at 1.34GHz, 3.23GHz and 5.8GHz with lower than −10dB return loss respectively. The measurement result achieves a wideband RFID tag antenna performance and is in good agreement with the calculated results.
Visual and LiDAR based odometry methods are key enablers for autonomous robots sub-problems such as mapping and localization or temporal aggregation and fusion of sensor data. When it comes to trajectory reconstructio...
详细信息
Interactive medical image segmentation methods have become increasingly popular in recent years. These methods combine manual labeling and automatic segmentation, reducing the workload of annotation while maintaining ...
详细信息
Delineating 3D blood vessels is essential for clinical diagnosis and treatment, however, is challenging due to complex structure variations and varied imaging conditions. Supervised deep learning has demonstrated its ...
详细信息
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati...
详细信息
RNA-binding proteins (RBPs) are essential for gene expression, and the complex RNA-protein interaction mechanisms require analysis of global RNA information. Therefore, accurate prediction of RBP binding sites on full...
详细信息
ISBN:
(数字)9798350386226
ISBN:
(纸本)9798350386233
RNA-binding proteins (RBPs) are essential for gene expression, and the complex RNA-protein interaction mechanisms require analysis of global RNA information. Therefore, accurate prediction of RBP binding sites on full-length RNA transcripts is crucial for understanding these mechanisms and their roles in diseases. While machine learning methods can predict RBP binding to RNA fragments, extending this to full-length transcripts presents challenges due to sequence length and data imbalance. In this paper, we introduce RBP-Former, a binding site joint prediction model designed specifically for full-length RNA transcripts that can be used for multiple RBPs. This model processes information at both coarse and fine-grained levels to fully exploit sequence data and its interactions with multiple RBPs. We develop multi-level imbalance learning strategies, achieving favorable results on imbalanced data. Our method outperforms existing methods in predicting binding sites on full-length RNA transcripts for multiple RBPs, demonstrating its effectiveness in handling imbalanced label and sample distributions.
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications...
详细信息
The generative adversarial network(GAN)is first proposed in 2014,and this kind of network model is machine learning systems that can learn to measure a given distribution of data,one of the most important applications is style *** transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output ***-GAN is a classic GAN model,which has a wide range of scenarios in style *** its unsupervised learning characteristics,the mapping is easy to be learned between an input image and an output ***,it is difficult for CYCLE-GAN to converge and generate high-quality *** order to solve this problem,spectral normalization is introduced into each convolutional kernel of the *** convolutional kernel reaches Lipschitz stability constraint with adding spectral normalization and the value of the convolutional kernel is limited to[0,1],which promotes the training process of the proposed ***,we use pretrained model(VGG16)to control the loss of image content in the position of l1 *** avoid overfitting,l1 regularization term and l2 regularization term are both used in the object loss *** terms of Frechet Inception Distance(FID)score evaluation,our proposed model achieves outstanding performance and preserves more discriminative *** results show that the proposed model converges faster and achieves better FID scores than the state of the art.
Data-free knowledge distillation aims to learn a compact student network from a pre-trained large teacher network without using the original training data of the teacher network. Existing collection-based and generati...
详细信息
Palmprint recognition has emerged as a prominent biometric technology, widely applied in diverse scenarios. Traditional handcrafted methods for palmprint recognition often fall short in representation capability, as t...
详细信息
We have previously proposed a linear approach for reducing the global drift of a video-based frame-to-frame trajectory estimation method by correcting it at selected points in time based on the alignment of past and c...
详细信息
ISBN:
(纸本)9781665464383
We have previously proposed a linear approach for reducing the global drift of a video-based frame-to-frame trajectory estimation method by correcting it at selected points in time based on the alignment of past and current 3D LiDAR measurements (see [7]). In this paper we assess the tolerance to noise of a series of methods derived from the one previously proposed, this time using both linear and non-linear optimization methods to calculate the correction transform. We generate synthetic datasets with various noise pollution levels and assess the performance of each method under investigation in recovering artificially induced odometry estimation errors.
暂无评论