咨询与建议

限定检索结果

文献类型

  • 158 篇 会议
  • 96 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 257 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 163 篇 工学
    • 107 篇 计算机科学与技术...
    • 94 篇 软件工程
    • 41 篇 信息与通信工程
    • 35 篇 生物医学工程(可授...
    • 33 篇 光学工程
    • 30 篇 控制科学与工程
    • 22 篇 电气工程
    • 21 篇 电子科学与技术(可...
    • 20 篇 生物工程
    • 17 篇 机械工程
    • 11 篇 仪器科学与技术
    • 7 篇 化学工程与技术
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 交通运输工程
    • 4 篇 核科学与技术
  • 98 篇 理学
    • 63 篇 数学
    • 34 篇 物理学
    • 25 篇 生物学
    • 20 篇 统计学(可授理学、...
    • 9 篇 化学
    • 8 篇 系统科学
  • 39 篇 管理学
    • 20 篇 管理科学与工程(可...
    • 20 篇 图书情报与档案管...
    • 4 篇 工商管理
  • 23 篇 医学
    • 19 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 15 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 7 篇 艺术学
    • 7 篇 设计学(可授艺术学...
  • 4 篇 教育学
  • 2 篇 经济学
  • 2 篇 法学
  • 1 篇 哲学
  • 1 篇 农学
  • 1 篇 军事学

主题

  • 25 篇 pattern recognit...
  • 21 篇 image processing
  • 16 篇 feature extracti...
  • 15 篇 image segmentati...
  • 14 篇 computer science
  • 11 篇 support vector m...
  • 11 篇 laboratories
  • 9 篇 image reconstruc...
  • 8 篇 image analysis
  • 8 篇 computer vision
  • 8 篇 robustness
  • 8 篇 training
  • 7 篇 image edge detec...
  • 7 篇 machine learning
  • 7 篇 accuracy
  • 6 篇 pixel
  • 6 篇 visualization
  • 6 篇 semantics
  • 6 篇 artificial intel...
  • 6 篇 shape

机构

  • 21 篇 image processing...
  • 17 篇 institute of ima...
  • 13 篇 school of comput...
  • 10 篇 institute of ima...
  • 7 篇 department of au...
  • 6 篇 pattern recognit...
  • 5 篇 institute of ima...
  • 5 篇 laboratory of im...
  • 5 篇 pattern recognit...
  • 5 篇 school of comput...
  • 4 篇 national laborat...
  • 4 篇 institute of med...
  • 4 篇 university key l...
  • 4 篇 school of comput...
  • 4 篇 center for advan...
  • 3 篇 school of comput...
  • 3 篇 the school of co...
  • 3 篇 school of comput...
  • 3 篇 key laboratory o...
  • 3 篇 institute for pa...

作者

  • 21 篇 ping guo
  • 17 篇 yang jie
  • 9 篇 yang yang
  • 9 篇 sergiu nedevschi
  • 8 篇 guo ping
  • 7 篇 burkhardt hans
  • 7 篇 gong chen
  • 6 篇 qian yin
  • 6 篇 wang lisheng
  • 6 篇 huang xiaolin
  • 6 篇 chen huai
  • 4 篇 jie yang
  • 4 篇 li xiaoling
  • 4 篇 aniati murni ary...
  • 4 篇 a.k. jain
  • 4 篇 wang xiuying
  • 4 篇 g.c. stockman
  • 4 篇 yang jian
  • 4 篇 hong-bin shen
  • 4 篇 wang lihui

语言

  • 241 篇 英文
  • 13 篇 其他
  • 3 篇 中文
检索条件"机构=Pattern Recognition and Image Processing Laboratory Department of Computer Science"
257 条 记 录,以下是81-90 订阅
排序:
Learning data-adaptive nonparametric kernels
arXiv
收藏 引用
arXiv 2018年
作者: Liu, Fanghui Huang, Xiaolin Gong, Chen Yang, Jie Li, Li Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Department of Automation Tsinghua University
Kernel methods have been extensively used in a variety of machine learning tasks such as classification, clustering, and dimensionality reduction. For complicated practical tasks, the traditional kernels, e.g., Gaussi... 详细信息
来源: 评论
Fast signal recovery from saturated measurements by linear loss and nonconvex penalties
arXiv
收藏 引用
arXiv 2018年
作者: He, Fan Huang, Xiaolin Liu, Yipeng Yan, Ming Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University The MOE Key Laboratory of System Control and Information Processing Shanghai200240 China School of Information and Communication Engineering University of Electronic Science and Technology of China Chengdu611731 China The Department of Computational Mathematics Science and Engineering Michigan State University MI United States
Sign information is the key to overcoming the inevitable saturation error in compressive sensing systems, which causes information loss and results in bias. For sparse signal recovery from saturation, we propose to us... 详细信息
来源: 评论
FWLBP: A scale invariant descriptor for texture classification
arXiv
收藏 引用
arXiv 2018年
作者: Roy, Swalpa Kumar Bhattacharya, Nilavra Chanda, Bhabatosh Chaudhuri, Bidyut B. Ghosh, Dipak Kumar Optical Character Recognition Laboratory Computer Vision and Pattern Recognition Unit Indian Statistical Institute Kolkata700108 India School of Information University of Texas AustinTX78712 United States Image Processing Laboratory Electronics and Communication Sciences Unit Indian Statistical Institute Kolkata700108 India Department of Electronics and Communication Engineering National Institute of Technology Rourkela Rourkela769008 India
In this paper we propose a novel texture descriptor called Fractal Weighted Local Binary pattern (FWLBP). The fractal dimension (FD) measure is relatively invariant to scale-changes, and presents a good correlation wi... 详细信息
来源: 评论
Person Re-identification by Integrating Static Texture and Shape Cues  12th
Person Re-identification by Integrating Static Texture and S...
收藏 引用
12th Chinese Conference on Biometric recognition, CCBR 2017
作者: Madongo, Canaan Tinotenda Huang, Di Chen, Jiaxin Laboratory of Intelligent Recognition and Image Processing School of Computer Science and Engineering Beihang University Beijing100191 China Department of Electrical and Computer Engineering New York University Abu Dhabi Abu Dhabi United Arab Emirates
Person Re-Identification (Re-ID) is a challenging task with wide ranging applications in various fields. This paper presents a novel hand-crafted method for this issue, enhancing the state of the art ones in literatur... 详细信息
来源: 评论
3D RoI-aware U-net for accurate and efficient colorectal tumor segmentation
arXiv
收藏 引用
arXiv 2018年
作者: Huang, Yi-Jie Dou, Qi Wang, Zi-Xian Liu, Li-Zhi Jin, Ying Li, Chao-Feng Wang, Lisheng Chen, Hao Xu, Rui-Hua Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University China Imsight Medical Technology Co. Ltd. China Department of Computer Science and Engineering The Chinese University of Hong Kong Hong Kong Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative Innovation Center for Cancer Medicine Guangzhou China
Segmentation of colorectal cancerous regions from 3D Magnetic Resonance (MR) images is a crucial procedure for radiotherapy which conventionally requires accurate delineation of tumour boundaries at an expense of labo... 详细信息
来源: 评论
Cross-media analysis and reasoning: advances and directions
收藏 引用
Frontiers of Information Technology & Electronic Engineering 2017年 第1期18卷 44-57页
作者: Yu-xin PENG Wen-wu ZHU Yao ZHAO Chang-sheng XU Qing-ming HUANG Han-qing LU Qing-hua ZHENG Tie-jun HUANG Wen GAO Institute of Computer Science and Technology Peking University Department of Computer Science and Technology Tsinghua University Institute of Information Science Beijing Jiaotong University National Laboratory of Pattern Recognition Institute of AutomationChinese Academy of Sciences Key Laboratory of Intelligent Information Processing Institute of Computing TechnologyChinese Academy of Sciences Department of Computer Science and Technology Xi'an Jiaotong University School of Electronics Engineering and Computer Science Peking University
Cross-media analysis and reasoning is an active research area in computer science, and a promising direction for artificial intelligence. However, to the best of our knowledge, no existing work has summarized the stat... 详细信息
来源: 评论
Edgy salient local binary patterns in inter-plane relationship for image retrieval in Diabetic Retinopathy
收藏 引用
Procedia computer science 2017年 115卷 440-447页
作者: Gajanan M. Galshetwar Laxman M. Waghmare Anil B. Gonde Subrahmanyam Murala Center of Excellence in Signal and Image Processing (COESIP) Department of ECE SGGSIET Nanded Maharashtra 431606 India Computer Vision and Pattern Recognition Laboratory Department of Electrical Engineering IIT Ropar Rupnagar 140001 India
In this paper, a novel approach for content based image retrieval (CBIR) in diabetic retinopathy (DR) is proposed. The concept of salient point selection and inter-plane relationship technique is used. Salient points ... 详细信息
来源: 评论
Nonconvex penalties with analytical solutions for one-bit compressive sensing
arXiv
收藏 引用
arXiv 2017年
作者: Huang, Xiaolin Yan, Ming Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing Shanghai200240 China Department of Computational Mathematics Science and Engineering Department of Mathematics Michigan State University East LansingMI48824 United States
One-bit measurements widely exist in the real world and can be used to recover sparse signals. This task is known as one-bit compressive sensing (1bit-CS). In this paper, we propose novel algorithms based on both conv... 详细信息
来源: 评论
Classification of COPD with Multiple Instance Learning
arXiv
收藏 引用
arXiv 2017年
作者: Cheplygina, Veronika Sørensen, Lauge Tax, David M.J. Pedersen, Jesper Holst Loog, Marco de Bruijne, Marleen Pattern Recognition Laboratory Delft University of Technology Delft Netherlands Image Group Department of Computer Science University of Copenhagen Copenhagen Denmark Department of Thoracic Surgery Rigshospitalet University of Copenhagen Copenhagen Denmark Biomedical Imaging Group Rotterdam Erasmus MC Rotterdam Netherlands
来源: 评论
Constructing multi-modality and multi-classifier radiomics predictive models through reliable classifier fusion
arXiv
收藏 引用
arXiv 2017年
作者: Zhou, Zhiguo Zhou, Zhi-Jie Hao, Hongxia Li, Shulong Chen, Xi Zhang, You Folkert, Michael Wang, Jing Department of Radiation Oncology UT Southwestern Medical Center DallasTX United States High-Tech Institute of Xi'an Xi'an China Department of Information and Control Engineering Xi'an University of Technology Xi'an China School of Computer Science and Technology Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education Xidian University Xi'an China School of Biomedical Engineering Southern Medical Unversity Guangzhou China Institute of Image Processing and Pattern Recognition Xi'an Jiaotong Unversity Xi'an China
Radiomics aims to extract and analyze large numbers of quantitative features from medical images and is highly promising in staging, diagnosing, and predicting outcomes of cancer treatments. Nevertheless, several chal... 详细信息
来源: 评论