Software metrics are collected at various phases of the software development process. These metrics contain the information of the software and can be used to predict software quality in the early stage of software li...
详细信息
Software metrics are collected at various phases of the software development process. These metrics contain the information of the software and can be used to predict software quality in the early stage of software life cycle. Intelligent computing techniques such as data mining can be applied in the study of software quality by analyzing software metrics. Clustering analysis, which can be considered as one of the data mining techniques, is adopted to build the software quality prediction models in the early period of software testing. In this paper, a new clustering method called Affinity Propagation is investigated for the analysis of two software metric datasets extracted from real-world software projects. Meanwhile, K-Means clustering method is also applied for comparison. The numerical experiment results show that the Affinity Propagation algorithm can be applied well in software quality prediction in the very early stage, and it is more effective on reducing Type II error.
This paper presents a new feature extraction method for iris recognition. Since two dimensional complex wavelet transform (2D-CWT) does not only keep wavelet transformpsilas properties of multiresolution decomposition...
详细信息
ISBN:
(纸本)9781424421749
This paper presents a new feature extraction method for iris recognition. Since two dimensional complex wavelet transform (2D-CWT) does not only keep wavelet transformpsilas properties of multiresolution decomposition analysis and perfect reconstruction, but also adds its new merits: approximate shift invariance, good directional selectivity for 2-D image, and limited redundancy, which are useful for iris feature extraction. So, a set of high frequency 2D-CWT coefficients are selected as features for iris recognition. The phase information of the coefficients is used for feature encoding and Hamming distance is adopted for classification. Experimental results show that the proposed algorithm can get good recognition rate.
In wireless sensor networks, to obtain a long network lifetime is a fundamental issue while without sacrificing crucial aspects of quality of service (area coverage, sensing reliability, and network connectivity). In ...
详细信息
In wireless sensor networks, to obtain a long network lifetime is a fundamental issue while without sacrificing crucial aspects of quality of service (area coverage, sensing reliability, and network connectivity). In this paper, we present a Voronoi-based sleeping configuration to deal with different sensing radii and location error. With our proposed sleeping candidate condition, redundant sensors are optionally identified and scheduled to sleep in order to extend the system lifetime while maintaining adequate sensor redundancy to tolerate sensor failures, energy depletions, and location error. Simulation results show that there is a tradeoff among energy conservation, area coverage, and fault tolerance, which varies between different sleeping candidate conditions.
A theoretical study for modeling technique of the remote sensing image classification based on the minimum description length (MDL) principle is presented in the paper. According to the MDL principle, modeling problem...
详细信息
A theoretical study for modeling technique of the remote sensing image classification based on the minimum description length (MDL) principle is presented in the paper. According to the MDL principle, modeling problem is an optimization procedure to find the shortest expected code length. Kullback-Leibler (KL) divergence is adopted as the system cost function to measure expected codelength, and the codelength will be the model we desired. The advantage of using the MDL principle to build appropriate model is analyzed theoretically, model optimization technique also is described.
Past decades, numerous spectral analysis based algorithms have been proposed for dimensionality reduction, which plays an important role in machine learning and artificial intelligence. However, most of these existing...
详细信息
Past decades, numerous spectral analysis based algorithms have been proposed for dimensionality reduction, which plays an important role in machine learning and artificial intelligence. However, most of these existing algorithms are developed intuitively and pragmatically, i.e., on the base of the experience and knowledge of experts for their own purposes. Therefore, it will be more informative to provide some a systematic framework for understanding the common properties and intrinsic differences in the algorithms. In this paper, we propose such a framework, i.e., ldquopatch alignmentrdquo, which consists of two stages: part optimization and whole alignment. With the proposed framework, various algorithms including the conventional linear algorithms and the manifold learning algorithms are reformulated into a unified form, which gives us some new understandings on these algorithms.
The software systems which are related to national science and technology projects are very crucial. This kind of systems always involves high technical factors and has to spend a large amount of money, so the quality...
详细信息
The software systems which are related to national science and technology projects are very crucial. This kind of systems always involves high technical factors and has to spend a large amount of money, so the quality and reliability of the software deserve to be further studied. Hence, we propose to apply four intelligent classification techniques most used in data mining fields, including Bayesian belief networks (BBN), nearest neighbor (NN), rough set (RS) and decision tree (DT), to validate the usefulness of software metrics for risk prediction. Results show that comparing with metrics such as Lines of code (LOC) and Cyclomatic complexity (V(G)) which are traditionally used for risk prediction, Halstead program difficulty (D), Number of executable statements (EXEC) and Halstead program volume (V) are the more effective metrics as risk predictors. By analyzing obtained results we also found that BBN was more effective than the other three methods in risk prediction.
Classification of multi-source remote sensing images has been studied for decades, and many methods have been proposed or improved. Most of these studies focus on how to improve the classifiers in order to obtain high...
详细信息
Classification of multi-source remote sensing images has been studied for decades, and many methods have been proposed or improved. Most of these studies focus on how to improve the classifiers in order to obtain higher classification accuracy. However, as we know, even if the most promising method such as neural network, its performance not only depends on the classifier itself, but also has relation with the training pattern (i.e. features). On consideration of this aspect, we propose an approach to feature selection and classification of multi-source remote sensing images based on Mallat fusion and residual error in this paper. Firstly, the fusion of multi-source images can provide a fused image which is more preferable for classification. And then a featureselection scheme approach based on fused image is proposed, which is to select effective subsets of features as inputs of a classifier by taking into account the residual error associated with each land-cover class. In addition, a classification technique base on selected features by using a feed-forward neural network is investigated. The results of computer experiments carried out on a multisource data set confirm the validity of the proposed approach.
ServiceBSP model is presented as an extension of BSP model with a view to the advantages of BSP model in Grid environment where large-scale and geographically distributed resources (abstracted as services) are availab...
详细信息
In statistical machine translation (SMT) research, phrase-based methods have been receiving more interest in recent years. In this paper, we first give a brief survey of phrase-based SMT framework, and then make detai...
详细信息
ISBN:
(纸本)9783540709381
In statistical machine translation (SMT) research, phrase-based methods have been receiving more interest in recent years. In this paper, we first give a brief survey of phrase-based SMT framework, and then make detailed comparisons of two typical implementations: alignment template approach and standard phrase-based approach. At last, we propose an improved model to integrate alignment template into standard phrase-based SMT as a new feature in a log-linear model. Experimental results show that our method outperforms the baseline method.
Automated tongue image segmentation in tongue diagnosis system of traditional Chinese medicine is difficult due to two factors: There are lots of pathological details on the surface of tongue, and the shapes of tongue...
详细信息
暂无评论