Weighted Color Co-occurrence Matrix (WCCM) is introduced as a novel feature for image retrieval. When indexing images with WCCM feature, the similarities of diagonal elements and non-diagonal elements are weighted res...
详细信息
To over come the drawbacks existing in current measurement methods for detecting and controlling colors in printing process, a new medal for color separation and dot recognition is proposed from a view of digital imag...
详细信息
To over come the drawbacks existing in current measurement methods for detecting and controlling colors in printing process, a new medal for color separation and dot recognition is proposed from a view of digital imageprocessing and patter recognition. In this model, firstly data samples are collected from some color patches by the Fuzzy C-Means (FCM) method; then a classifier based on the Cerebellar Model Articulation Controller (CMAC) is constructed which is used to recognize color pattern of each pixel in a microscopic halftone image. The principle of color separation and the algorithm model are introduced and the experiments show the effectiveness of the CMAC-based classifier as opposed to the BP network.
The feature contrast model (FCM), which is the simplest form of the matching function in Tversky's set-theoretic similarity, is a famous similarity model in psychological society. Although FCM can be employed to e...
详细信息
The feature contrast model (FCM), which is the simplest form of the matching function in Tversky's set-theoretic similarity, is a famous similarity model in psychological society. Although FCM can be employed to explain the similarity with both semantic and perceptual features, it is very difficult for FCM to measure natural image similarity with semantic features because of the requirement that all features must be binary and the complex mechanism that semantic features are transformed into binary features. The fuzzy feature contrast model (FFCM) is an extension of FCM, which replaces the complex feature representation mechanism with a proper fuzzy membership function. By this fuzzy logic, visual features, in the FFCM, can be represented as multidimensional points instead of expansible feature set and used to measure visual similarity between two images. Based on the analysis of the distinction between two feature structures (i.e., the expansible feature set and multidimensional vector), we propose a ratio model, which expresses similarity between two images as a ratio of the measures of semantic features set to that of multidimensional visual features. Experiments results, over real-world image collections, show that our model addresses the distinction between semantic and visual feature structures to some extension. In particular, our model is suit for the case that semantic features are implicitly obtained from interaction with users and the visual features are transparent for users, for example, the relevance feedback in interactive image retrieval.
Two segmentation methods based on the minimum spanning tree principle are evaluated with respect to each other. The hierarchical minimum spanning tree method is also evaluated with respect to human segmentations. Disc...
详细信息
A concept relating story-board description of video sequences with spatio-temporal hierarchies build by local contraction processes of spatio-temporal relations is presented. Object trajectories are curves in which th...
详细信息
Motivated by claims to 'bridge the representational gap between image and model features' and by the growing importance of topological properties we discuss several extensions to dual graph pyramids: structura...
详细信息
Radar scene matching technique has been widely found in many application fields such as remote sensing, navigation, terrain-map match, scenery variance analysis and so on. Radar image geometry is quite different from ...
详细信息
Radar scene matching technique has been widely found in many application fields such as remote sensing, navigation, terrain-map match, scenery variance analysis and so on. Radar image geometry is quite different from that of optical satellite imagery, whose imaging is a slanting imaging of electromagnetic microwave reflection. The different characters between radar image and optical satellite images are very distinct, such as the layover distortion of ground-truth and speckle noise, which degrades the image to such an extent that the features are very unclear and difficult to be extracted. So the factors such as the hypsography, ground truth, sensor altitude and imaging time should be taken into account for radar image and optical image matching. In this paper, we develop an image match algorithm based on reference map multi-area selection using fuzzy sets. image matching is generally a procedure that calculates the similarity measurement between sensed image and the corresponding intercepted image in reference map and it searches the maximum position in the correlation map. Our method adopts a converse matching strategy which selects multi-areas in optical reference map using fuzzy sets as model images, then match them on the sensed image respectively by normalized cross correlation matching algorithm and fuse the match results to get the optimum registered position. Multi-areas selection mainly considers two influence factors such as ground-truth texture features and the hypsography (DEM) of imaging region, which will suppress the influence of great variance imaging region. Experiment results show the method is effective in registering performance and reducing the calculation.
This paper presents the evaluation of an object tracking system that has been developed in the context of aircraft activity monitoring. The overall tracking system comprises three main modules -Motion Detection, Objec...
详细信息
The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation opera...
详细信息
The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation operation. To solve the proem of hand gesture recognition, Fuzzy-Rough based nearest neighbour(RNN) algorithm is applied for classification. For avoiding the costly compute, an improved nearest neighbour classification algorithm based on fuzzy-rough set theory (FRNNC) is proposed. The algorithm employs the represented cluster points instead of the whole training samples, and takes the hand gesture data's fuzziness and the roughness into account, so the campute spending is decreased and the recognition rate is increased. The 30 gestures in Chinese sign language alphabet are used for approving the effectiveness of the proposed algorithm. The recognition rate is 94.96%, which is better than that of KNN (K nearest neighbor)and Fuzzy- KNN (Fuzzy K nearest neighbor).
When an monocular vision-based unmanned aerial vehicle (UAV) based on vision is flown to the final approach fix to intercept the glide slope without the navigation of Global Positioning System (GPS), the position and ...
详细信息
When an monocular vision-based unmanned aerial vehicle (UAV) based on vision is flown to the final approach fix to intercept the glide slope without the navigation of Global Positioning System (GPS), the position and orientation of the airport runway in image must be detected accurately so as to a host of suitable procedures have to be followed. The optimum length of the final approach is about five miles from the runway threshold. The front view of the runway, which is achieved at the moment, is very illegible. The approaching marking (cross bar) of the runway are showed as some white spots of high intensity and the complicated backgrounds of the airport are included in the images. In this case, spots with high intensity should be extracted and classified, some of these spots are just the images of the background noises and the pseudo-targets, which can't be separated with the spots of the runway as in the view there is no significant characteristic difference among them ostensibly. Fortunately, in the terrestrial coordinate space, most of the runway marks are located at the apexes of a rectangle, having some geometric relationships. The relationship among the projection coordinates of the runway spots in the images can be determined according to the perspective principle, the constraint condition of the rectangle as well as the front shot constraint condition of the target, by using this relationship, the runway approaching marks can be separated, the position and the direction of the runway in the images can be identified. In this paper, the clustering management is adopted so as to greatly reduce the computing time. The consequence of the experiments shows that by this algorithm, even from a place far away from the runway whose marks are unclear, we also can effectively detect the runway.
暂无评论