咨询与建议

限定检索结果

文献类型

  • 1,483 篇 会议
  • 654 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 2,146 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,411 篇 工学
    • 817 篇 计算机科学与技术...
    • 702 篇 软件工程
    • 298 篇 信息与通信工程
    • 209 篇 机械工程
    • 206 篇 控制科学与工程
    • 204 篇 光学工程
    • 157 篇 生物工程
    • 152 篇 生物医学工程(可授...
    • 130 篇 电子科学与技术(可...
    • 106 篇 电气工程
    • 92 篇 仪器科学与技术
    • 62 篇 化学工程与技术
    • 41 篇 交通运输工程
    • 34 篇 土木工程
    • 30 篇 建筑学
    • 27 篇 航空宇航科学与技...
    • 24 篇 安全科学与工程
  • 768 篇 理学
    • 462 篇 数学
    • 253 篇 物理学
    • 173 篇 生物学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
    • 56 篇 系统科学
  • 259 篇 管理学
    • 147 篇 管理科学与工程(可...
    • 123 篇 图书情报与档案管...
  • 90 篇 医学
    • 78 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
  • 28 篇 法学
    • 23 篇 社会学
  • 27 篇 艺术学
    • 26 篇 设计学(可授艺术学...
  • 18 篇 农学
  • 10 篇 经济学
  • 10 篇 军事学
  • 9 篇 教育学
  • 5 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 215 篇 pattern recognit...
  • 200 篇 image processing
  • 137 篇 image segmentati...
  • 135 篇 feature extracti...
  • 80 篇 computer vision
  • 76 篇 shape
  • 68 篇 image reconstruc...
  • 67 篇 support vector m...
  • 67 篇 robustness
  • 65 篇 face recognition
  • 59 篇 cameras
  • 53 篇 image analysis
  • 53 篇 training
  • 53 篇 principal compon...
  • 52 篇 image edge detec...
  • 52 篇 image recognitio...
  • 48 篇 humans
  • 46 篇 object detection
  • 39 篇 data mining
  • 38 篇 pixel

机构

  • 262 篇 institute of ima...
  • 241 篇 institute of ima...
  • 74 篇 image processing...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 30 篇 inst. of image p...
  • 26 篇 institute of med...
  • 25 篇 institute of ima...
  • 22 篇 school of inform...
  • 21 篇 institute of ima...
  • 21 篇 pattern recognit...
  • 18 篇 intelligent reco...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 institute for pa...
  • 17 篇 laboratory of in...
  • 17 篇 school of softwa...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 15 篇 pattern recognit...

作者

  • 197 篇 yang jie
  • 137 篇 jie yang
  • 68 篇 ping guo
  • 58 篇 yuncai liu
  • 52 篇 huang xiaolin
  • 48 篇 pengfei shi
  • 34 篇 yunhong wang
  • 33 篇 zhang tianxu
  • 32 篇 kropatsch walter...
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang yunhong
  • 24 篇 zhou yue
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 20 篇 wang lisheng
  • 20 篇 hong-bin shen
  • 20 篇 杨杰
  • 19 篇 h. bischof
  • 19 篇 xin yang

语言

  • 2,032 篇 英文
  • 81 篇 中文
  • 36 篇 其他
检索条件"机构=Pattern Recognition and Image Processing Processing Laboratory"
2146 条 记 录,以下是1961-1970 订阅
排序:
A segmentation method for touching italic characters
A segmentation method for touching italic characters
收藏 引用
International Conference on pattern recognition
作者: Yun Li S. Naoi M. Cheriet C.Y. Suen Center of Pattern Recognition and Machine Intelligence Concordia University Montreal QUE Canada Document Processing Laboratory Fujitsu Laboratories Limited Kawasaki Japan Laboratory for Imagery Vision and Artificial Intelligence Ecole de Technologie Supérieure University of Quebec Montreal QUE Canada
Segmentation is an essential part of a recognition system. It is difficult to handle touching characters, especially for italic fonts. We present a method to achieve the accurate segmentation of touching italic charac... 详细信息
来源: 评论
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
AirwayNet: A Voxel-Connectivity Aware Approach for Accurate Airway Segmentation Using Convolutional Neural Networks
arXiv
收藏 引用
arXiv 2019年
作者: Qin, Yulei Chen, Mingjian Zheng, Hao Gu, Yun Shen, Mali Yang, Jie Huang, Xiaolin Zhu, Yue-Min Yang, Guang-Zhong Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Insa Lyon Lyon France Hamlyn Centre for Robotic Surgery Imperial College London London United Kingdom
Airway segmentation on CT scans is critical for pulmonary disease diagnosis and endobronchial navigation. Manual extraction of airway requires strenuous efforts due to the complicated structure and various appearance ... 详细信息
来源: 评论
Progressive low/high-resolution Space Attention Fusion Network for Single image Super-Resolution
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1828卷
作者: Chengzu Zhong Yue Zhou Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
The general single image super-resolution methods mainly extract features from the high-resolution (HR) space by the pre-upscaling step at the beginning of the network or from the low-resolution (LR) space before the ...
来源: 评论
Multi-feature bio-inspired model for scene classification
收藏 引用
Applied Mechanics and Materials 2013年 303-306卷 1569-1572页
作者: Hu, De-Kun Lin, Jie College of Information Science and Technology Chengdu University Chengdu 610106 China Key Laboratory of Pattern Recognition and Intelligent Information Processing Institutions of Higher Education of Sichuan Province 610106 China School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 China
A multi-feature bio-inspired model for scene image classification (MFBIM) is presented in this work;it extends the hierarchical feedforward model of the visual cortex. Firstly, each of three paths of classification us... 详细信息
来源: 评论
A Semantic Segmentation Method of Buildings in Remote Sensing image Based on Improved UNet  2
A Semantic Segmentation Method of Buildings in Remote Sensin...
收藏 引用
2nd International Conference on Signal image processing and Communication, ICSIPC 2022
作者: Li, Zhongyu Liu, Yang Kuang, Yin Wang, Huajun Liu, Cheng College of Computer Science Chengdu Normal University Chengdu611130 China College of Geophysics Chengdu University of Technology Chengdu610059 China Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Chengdu University Chengdu610106 China Artificial Intelligence Key Laboratory of Sichuan Province Zigong643000 China Key Laboratory of interior Layout optimization and Security Institutions of Higher Education of Sichuan Province Chengdu Normal University Sichuan Chengdu611130 China College of Movie and Media Sichuan Normal University Chengdu610066 China
Aiming at the problem of model instability and overfitting of deep neural networks with the deepening of the number of network layers, the current mainstream method is to use batch normalization (BN) to alleviate them... 详细信息
来源: 评论
Target recognition method based on template matching in downward-looking infrared image
Target recognition method based on template matching in down...
收藏 引用
International Conference on Audio, Language and image processing, ICALIP
作者: Hu Zhu Lizhen Deng Gang Zhou Xiaodong Bai Gaihua Wang National Key Laboratory of Science and Technology on Multi-spectral Information Processing Institute for Pattern Recognition and Artificial Intelligence Huazhong University of Science and Technology Wuhan China College of Electrical & Electronic Engineering Huazhong University of Science and Technology Wuhan China
Automatic ground target recognition technology in downward-looking infrared imagery is challenging problems due to the complexity of real-world. A robust ground target recognition method is proposed for downward-looki... 详细信息
来源: 评论
Prediction of protein folding rates from structural topology and complex network properties
收藏 引用
IPSJ Transactions on Bioinformatics 2010年 3卷 40-53页
作者: Song, Jiangning Takemoto, Kazuhiro Shen, Hongbin Tan, Hao Gromiha, M. Michael Akutsu, Tatsuya Bioinformatics Center Institute for Chemical Research Kyoto University Japan Department of Biochemistry and Molecular Biology Monash University Australia PRESTO Japan Science and Technology Agency Japan Institute of Image Processing and Pattern Recognition Shanghai Jiaotong University China Computational Biology Research Center National Institute of Advanced Industrial Science and Technology Japan
As a fundamental biological problem, revealing the protein folding mechanism remains to be one of the most challenging problems in structural bioinformatics. Prediction of protein folding rate is an important step tow... 详细信息
来源: 评论
Modeling Inter-Intra Heterogeneity for Graph Federated Learning
arXiv
收藏 引用
arXiv 2024年
作者: Yu, Wentao Chen, Shuo Tong, Yongxin Gu, Tianlong Gong, Chen School of Computer Science and Engineering Nanjing University of Science and Technology China Center for Advanced Intelligence Project RIKEN Japan State Key Laboratory of Complex & Critical Software Environment Beihang University China Jinan University China Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China
Heterogeneity is a fundamental and challenging issue in federated learning, especially for the graph data due to the complex relationships among the graph nodes. To deal with the heterogeneity, lots of existing method... 详细信息
来源: 评论
Robot Debater: Debate-styled Text Auto-generation System Based on Large Foundation Language Models
Robot Debater: Debate-styled Text Auto-generation System Bas...
收藏 引用
pattern recognition and Machine Learning (PRML), IEEE International Conference on
作者: Yu Zhu Yijun Ling Xufeng Ling Jie Yang Shanghai Library (Institute of Scientific and Technical Information of Shanghai) Shanghai China Shanghai Xiangming High School Shanghai China School of Artificial Intelligence Shanghai Normal University Tianhua College Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiaotong University Shanghai China
We use a large foundation language model, which is fine-tuned with debate corpora, to develop a robot debater application. To address the limitations of requiring immense computational power in large base language mod...
来源: 评论