咨询与建议

限定检索结果

文献类型

  • 1,496 篇 会议
  • 654 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 2,159 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,419 篇 工学
    • 812 篇 计算机科学与技术...
    • 694 篇 软件工程
    • 299 篇 信息与通信工程
    • 212 篇 机械工程
    • 209 篇 控制科学与工程
    • 198 篇 光学工程
    • 157 篇 生物工程
    • 152 篇 生物医学工程(可授...
    • 136 篇 电子科学与技术(可...
    • 112 篇 电气工程
    • 97 篇 仪器科学与技术
    • 62 篇 化学工程与技术
    • 41 篇 交通运输工程
    • 32 篇 土木工程
    • 28 篇 建筑学
    • 27 篇 航空宇航科学与技...
    • 24 篇 材料科学与工程(可...
    • 24 篇 安全科学与工程
  • 773 篇 理学
    • 465 篇 数学
    • 251 篇 物理学
    • 173 篇 生物学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
    • 57 篇 系统科学
  • 265 篇 管理学
    • 147 篇 管理科学与工程(可...
    • 129 篇 图书情报与档案管...
  • 87 篇 医学
    • 75 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 47 篇 药学(可授医学、理...
  • 29 篇 艺术学
    • 28 篇 设计学(可授艺术学...
  • 28 篇 法学
  • 19 篇 农学
  • 11 篇 经济学
  • 10 篇 教育学
  • 10 篇 军事学
  • 5 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 215 篇 pattern recognit...
  • 198 篇 image processing
  • 134 篇 image segmentati...
  • 134 篇 feature extracti...
  • 78 篇 computer vision
  • 77 篇 shape
  • 68 篇 support vector m...
  • 67 篇 robustness
  • 65 篇 face recognition
  • 65 篇 image reconstruc...
  • 59 篇 cameras
  • 54 篇 principal compon...
  • 53 篇 image analysis
  • 52 篇 image edge detec...
  • 52 篇 image recognitio...
  • 51 篇 training
  • 48 篇 humans
  • 47 篇 object detection
  • 39 篇 data mining
  • 38 篇 pixel

机构

  • 266 篇 institute of ima...
  • 242 篇 institute of ima...
  • 74 篇 image processing...
  • 44 篇 institute of ima...
  • 39 篇 institute of ima...
  • 30 篇 institute of ima...
  • 26 篇 institute of med...
  • 23 篇 school of inform...
  • 21 篇 institute of ima...
  • 21 篇 pattern recognit...
  • 19 篇 institute for pa...
  • 19 篇 inst. of image p...
  • 18 篇 intelligent reco...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 laboratory of in...
  • 17 篇 institute of ima...
  • 16 篇 department of au...
  • 16 篇 school of softwa...
  • 16 篇 key laboratory o...

作者

  • 195 篇 yang jie
  • 138 篇 jie yang
  • 68 篇 ping guo
  • 58 篇 yuncai liu
  • 54 篇 huang xiaolin
  • 46 篇 pengfei shi
  • 34 篇 yunhong wang
  • 33 篇 zhang tianxu
  • 32 篇 kropatsch walter...
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 zhou yue
  • 25 篇 wang yunhong
  • 24 篇 wang lisheng
  • 22 篇 liu jian
  • 21 篇 liu yuncai
  • 20 篇 hong-bin shen
  • 20 篇 杨杰
  • 20 篇 shi pengfei
  • 19 篇 h. bischof

语言

  • 1,960 篇 英文
  • 117 篇 其他
  • 86 篇 中文
检索条件"机构=Pattern Recognition and Image Processing Processing Laboratory"
2159 条 记 录,以下是241-250 订阅
Dynamic Frame Interpolation in Wavelet Domain
arXiv
收藏 引用
arXiv 2023年
作者: Kong, Lingtong Jiang, Boyuan Luo, Donghao Chu, Wenqing Tai, Ying Wang, Chengjie Yang, Jie The Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai200240 China The Youtu Lab Tencent Shanghai200233 China The School of Intelligence Science and Technology Nanjing University Suzhou215163 China
Video frame interpolation is an important low-level vision task, which can increase frame rate for more fluent visual experience. Existing methods have achieved great success by employing advanced motion models and sy... 详细信息
来源: 评论
Fdinet: Feature-Decomposition-Interaction Networks for Retinal Vessel Segmentation
Fdinet: Feature-Decomposition-Interaction Networks for Retin...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Yuncheng Yang Jie Yang Junjun He Yun Gu Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China School of Biomedical Engineering Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China
Automated segmentation of retinal vessels is challenged by the complexity of curvilinear structures. In this work, we formulate the segmentation task as the decomposition and interaction of topological and scale featu...
来源: 评论
CDFI: Cross Domain Feature Interaction for Robust Bronchi Lumen Detection
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Jiasheng Zhang, Tianyi Wu, Yangqian Yang, Jie Yang, Guang-Zhong Gu, Yun The Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China The Shanghai Center for Brain Science and Brain-Inspired Technology Shanghai China
Endobronchial intervention is increasingly used as a minimally invasive means for the treatment of pulmonary diseases. In order to reduce the difficulty of manipulation in complex airway networks, robust lumen detecti... 详细信息
来源: 评论
Towards Robust Neural Networks Via Orthogonal Diversity
SSRN
收藏 引用
SSRN 2023年
作者: Fang, Kun Tao, Qinghua Wu, Yingwen Li, Tao Cai, Jia Cai, Feipeng Huang, Xiaolin Yang, Jie Institute of Image Processing and Pattern Recognition Department of Automation Shanghai Jiao Tong University Shanghai China ESAT-STADIUS KU Leuven LeuvenB-3001 Belgium Central Media Technology Institute Huawei Technologies Ltd. China
Deep Neural Networks (DNNs) are vulnerable to invisible perturbations on the images generated by adversarial attacks, which raises researches on the adversarial robustness of DNNs. A series of methods represented by t... 详细信息
来源: 评论
2M3DF: Advancing 3D Industrial Defect Detection with Multi Perspective Multimodal Fusion Network
收藏 引用
IEEE Transactions on Circuits and Systems for Video Technology 2025年
作者: Asad, Mujtaba Azeem, Waqar Jiang, He Mustafa, Hafiz Tayyab Yang, Jie Liu, Wei Shanghai Jiao Tong University Institute of Image Processing and Pattern Recognition Department of Automation Shanghai200240 China Lahore Garrison University Department of Software Engineering Lahore54000 Pakistan China University of Mining and Technology School of Information and Control Engineering Jiangsu Xuzhou221116 China Zhejiang Normal University School of Computer Science and Technology Jinhua321004 China
In the context of Industrial Anomaly Detection (IAD), ensuring the quality of manufactured products is critical. Traditional 2D based methods often fail to capture anomalies present in complex 3D shapes. For effective... 详细信息
来源: 评论
Isoform Function Prediction Based on Heterogeneous Graph Attention Networks
Isoform Function Prediction Based on Heterogeneous Graph Att...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Kuo Guo Yifan Li Hao Chen Hong-Bin Shen Yang Yang Department of Computer Science and Engineering Shanghai Jiao Tong University and Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University and Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai China Computational Biology Department School of Computer Science Carnegie Mellon University Pittsburgh PA USA
Isoforms refer to different mRNA molecules transcribed from the same gene, which can be translated into proteins with varying structures and functions. Predicting the functions of isoforms is an essential topic in bio...
来源: 评论
MBD-Net: Multi-Branch Dilated Convolutional Network With Cyst Discriminator for Renal Multi-Structure Segmentation
MBD-Net: Multi-Branch Dilated Convolutional Network With Cys...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Yusheng Liu Yingjie Zhao Meihuan Wang Yichao Hao Xiuying Wang Lisheng Wang Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China College of Medicine and Biological Information Engineering Northeastern University Shenyang China School of Computer Science The University of Sydney Sydney NSW Australia
In surgery-based renal cancer treatment, one of the most essential tasks is the three-dimensional (3D) kidney parsing on computed tomography angiography (CTA) images. In this paper, we propose an end-to-end convolutio...
来源: 评论
An Active Landing Recovery Method for Quadrotor UAV: Localization, Tracking and Buffering Landing
收藏 引用
IFAC-PapersOnLine 2023年 第2期56卷 3366-3372页
作者: Yongkang Xu Zhihua Chen Shoukun Wang Junzheng Wang National Key Lab of Autonomous Intelligent Unmanned Systems Beijing Institute of Technology Beijing CO 100081 P.R.China Key Laboratory of Jiangxi Province for Image Processing and Pattern Recognition and MOE Key Lab of Nondestructive Testing Technology School of Information Engineering Nanchang Hangkong University Nanchang CO 330063 P.R. China
This paper proposes a principle of fully autonomous ground mobile landing recovery of Unmanned Aerial Vehicles (UAV) for the problems of relatively fixed landing point, passive recovery, poor flexibility, and environm... 详细信息
来源: 评论
Noise Perturbation Based Graph Contrastive Learning via Flexible Filters for Node Classification
Noise Perturbation Based Graph Contrastive Learning via Flex...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhilong Xiong Jia Cai Ranhui Yan Xiaolin Huang xFusion Digital Technologies Company Limited Shenzhen China School of Digital Economics Guangdong University of Finance & Economics Guangzhou China School of Statistics and Mathematics Guangdong University of Finance & Economics Guangzhou China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
Graph neural networks (GNNs), as a powerful deep learning framework for modeling graph-structured data, have attracted lots of attention recently. Most of existing GNNs need a lot of labeled data. However, constructin... 详细信息
来源: 评论
Zero-Shot Audio Captioning Using Soft and Hard Prompts
IEEE Transactions on Audio, Speech and Language Processing
收藏 引用
IEEE Transactions on Audio, Speech and Language processing 2025年 33卷 2045-2058页
作者: Yiming Zhang Xuenan Xu Ruoyi Du Haohe Liu Yuan Dong Zheng-Hua Tan Wenwu Wang Zhanyu Ma Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing China Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China Centre for Vision Speech and Signal Processing University of Surrey Guildford U.K. Department of Electronic Systems Aalborg University Aalborg Denmark
In traditional audio captioning methods, a model is usually trained in a fully supervised manner using a human-annotated dataset containing audio-text pairs and then evaluated on the test set from the same dataset. Su... 详细信息
来源: 评论