咨询与建议

限定检索结果

文献类型

  • 1,494 篇 会议
  • 651 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 2,154 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,418 篇 工学
    • 823 篇 计算机科学与技术...
    • 709 篇 软件工程
    • 297 篇 信息与通信工程
    • 208 篇 机械工程
    • 207 篇 控制科学与工程
    • 204 篇 光学工程
    • 157 篇 生物工程
    • 154 篇 生物医学工程(可授...
    • 130 篇 电子科学与技术(可...
    • 104 篇 电气工程
    • 92 篇 仪器科学与技术
    • 62 篇 化学工程与技术
    • 41 篇 交通运输工程
    • 33 篇 土木工程
    • 29 篇 建筑学
    • 27 篇 航空宇航科学与技...
    • 24 篇 安全科学与工程
  • 773 篇 理学
    • 464 篇 数学
    • 254 篇 物理学
    • 173 篇 生物学
    • 143 篇 统计学(可授理学、...
    • 59 篇 化学
    • 56 篇 系统科学
  • 262 篇 管理学
    • 150 篇 管理科学与工程(可...
    • 124 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 89 篇 医学
    • 77 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
  • 28 篇 法学
  • 27 篇 艺术学
    • 26 篇 设计学(可授艺术学...
  • 19 篇 农学
  • 11 篇 经济学
  • 10 篇 教育学
  • 10 篇 军事学
  • 5 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 215 篇 pattern recognit...
  • 200 篇 image processing
  • 138 篇 image segmentati...
  • 134 篇 feature extracti...
  • 80 篇 computer vision
  • 76 篇 shape
  • 67 篇 support vector m...
  • 67 篇 image reconstruc...
  • 67 篇 robustness
  • 65 篇 face recognition
  • 59 篇 cameras
  • 53 篇 image analysis
  • 53 篇 principal compon...
  • 52 篇 image edge detec...
  • 52 篇 image recognitio...
  • 51 篇 training
  • 48 篇 humans
  • 46 篇 object detection
  • 39 篇 data mining
  • 38 篇 pixel

机构

  • 262 篇 institute of ima...
  • 241 篇 institute of ima...
  • 74 篇 image processing...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 30 篇 inst. of image p...
  • 28 篇 institute of ima...
  • 25 篇 institute of med...
  • 23 篇 school of inform...
  • 21 篇 institute of ima...
  • 21 篇 pattern recognit...
  • 18 篇 intelligent reco...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 institute for pa...
  • 17 篇 laboratory of in...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 16 篇 school of softwa...
  • 15 篇 department of au...

作者

  • 197 篇 yang jie
  • 137 篇 jie yang
  • 68 篇 ping guo
  • 58 篇 yuncai liu
  • 53 篇 huang xiaolin
  • 46 篇 pengfei shi
  • 34 篇 yunhong wang
  • 33 篇 zhang tianxu
  • 32 篇 kropatsch walter...
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang yunhong
  • 24 篇 zhou yue
  • 23 篇 wang lisheng
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 20 篇 hong-bin shen
  • 20 篇 杨杰
  • 19 篇 h. bischof
  • 19 篇 xin yang

语言

  • 2,024 篇 英文
  • 81 篇 中文
  • 52 篇 其他
检索条件"机构=Pattern Recognition and Image Processing Processing Laboratory"
2154 条 记 录,以下是341-350 订阅
排序:
Dynamic Action recognition Under Simulated Prosthetic Vision
Dynamic Action Recognition Under Simulated Prosthetic Vision
收藏 引用
International Conference on Networking and Network Applications (NaNA)
作者: Ying Zhao Dantong Xu Tie Wang Yanchun Ren Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing School of Information Engineering Inner Mongolia University of Science and Technology Baotou Inner Mongolia
Purpose. To assess the recognition pattern of dynamic action by visual prosthesis' wearers. Methods. Twenty volunteers (classified by gender and experience) were recruited to carried out action recognition test in... 详细信息
来源: 评论
Fast Algorithm for Parallel Solving Inversion of Large Scale Small Matrices Based on Gpu
SSRN
收藏 引用
SSRN 2022年
作者: Jin, Xuebin Chen, Yewang Fan, Wentao Zhang, Yong Du, Jixiang The College of Computer Science and Technology Huaqiao University Xiamen China Fujian Key Laboratory of Big Data Intelligence and Security Huaqiao University Xiamen China Xiamen Key Laboratory of Computer Vision and Pattern Recognition Huaqiao University China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Soochow China College of Mechanical Engineering and Automation Huaqiao University Xiamen China
Inverting a matrix is time-consuming, and many works focus on accelerating inverting a single large matrix by GPU. However, the problem of inverting large-scale small matrices has little attention. In this paper, we p... 详细信息
来源: 评论
Attention-Guided Multi-scale Interaction Network for Face Super-Resolution
arXiv
收藏 引用
arXiv 2024年
作者: Wan, Xujie Li, Wenjie Gao, Guangwei Lu, Huimin Yang, Jian Lin, Chia-Wen The Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China The School of Automation Southeast University Nanjing210096 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Recently, CNN and Transformer hybrid networks demonstrated excellent performance in face super-resolution (FSR) tasks. Since numerous features at different scales in hybrid networks, how to fuse these multi-scale feat... 详细信息
来源: 评论
FDFlowNet: Fast optical flow estimation using a deep lightweight network
arXiv
收藏 引用
arXiv 2020年
作者: Kong, Lingtong Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University China Institute of Medical Robotics Shanghai Jiao Tong University China
Significant progress has been made for estimating optical flow using deep neural networks. Advanced deep models achieve accurate flow estimation often with a considerable computation complexity and time-consuming trai... 详细信息
来源: 评论
Bioimage-based protein subcellular location prediction: a comprehensive review
收藏 引用
Frontiers of Computer Science 2018年 第1期12卷 26-39页
作者: Ying-Ying XU Li-Xiu YAO Hong-Bin SHEN Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai 200240 China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai 200240 China
Subcellular localization of proteins can provide key hints to infer their functions and structures in cells. With the breakthrough of recent molecule imaging techniques, the usage of 2D bioimages has become increasing... 详细信息
来源: 评论
Learning bronchiole-sensitive airway segmentation cnns by feature recalibration and attention distillation  23rd
Learning bronchiole-sensitive airway segmentation cnns by fe...
收藏 引用
23rd International Conference on Medical image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Qin, Yulei Zheng, Hao Gu, Yun Huang, Xiaolin Yang, Jie Wang, Lihui Zhu, Yue-Min Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province College of Computer Science and Technology Guizhou University Guiyang China UdL INSA Lyon CREATIS CNRS UMR 5220 INSERM U1206 Lyon France
Training deep convolutional neural networks (CNNs) for airway segmentation is challenging due to the sparse supervisory signals caused by severe class imbalance between long, thin airways and background. In view of th... 详细信息
来源: 评论
DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for Visual Classification
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Rui Wu, Xiao-Jun Chen, Ziheng Xu, Tianyang Kittler, Josef School of Artificial Intelligence and Computer Science Jiangnan University Wuxi214122 China Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom School of Artificial Intelligence and Computer Science Jiangnan University China
image set-based visual classification methods have achieved remarkable performance, via characterising the image set in terms of a non-singular covariance matrix on a symmetric positive definite (SPD) manifold. To ada... 详细信息
来源: 评论
Progressive low/high-resolution Space Attention Fusion Network for Single image Super-Resolution
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1828卷
作者: Chengzu Zhong Yue Zhou Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
The general single image super-resolution methods mainly extract features from the high-resolution (HR) space by the pre-upscaling step at the beginning of the network or from the low-resolution (LR) space before the ...
来源: 评论
Edge-Aware Graph Attention Network for Ratio of Edge-User Estimation in Mobile Networks
Edge-Aware Graph Attention Network for Ratio of Edge-User Es...
收藏 引用
International Conference on pattern recognition
作者: Jiehui Deng Sheng Wan Xiang Wang Enmei Tu Xiaolin Huang Jie Yang Chen Gong PCA Lab the Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Hong Kong Polytechnic University Hong Kong SAR China
Estimating the Ratio of Edge-Users (REU) is an important issue in mobile networks, as it helps the subsequent adjustment of loads in different cells. However, existing approaches usually determine the REU manually, wh... 详细信息
来源: 评论
Multi-patch feature pyramid network for weakly supervised object detection in optical remote sensing images
arXiv
收藏 引用
arXiv 2021年
作者: Shamsolmoali, Pourya Chanussot, Jocelyn Zareapoor, Masoumeh Zhou, Huiyu Yang, Jie The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China LJK CNRS Inria Grenoble INP Université Grenoble Alpes Grenoble38000 France The School of Informatics University of Leicester LeicesterLE1 7RH United Kingdom
To read the paper please go to IEEE Transactions on Geoscience and Remote Sensing on IEEE Xplore. Object detection is a challenging task in remote sensing because objects only occupy a few pixels in the images, and th... 详细信息
来源: 评论