咨询与建议

限定检索结果

文献类型

  • 1,494 篇 会议
  • 651 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 2,154 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,418 篇 工学
    • 823 篇 计算机科学与技术...
    • 709 篇 软件工程
    • 297 篇 信息与通信工程
    • 208 篇 机械工程
    • 207 篇 控制科学与工程
    • 204 篇 光学工程
    • 157 篇 生物工程
    • 154 篇 生物医学工程(可授...
    • 130 篇 电子科学与技术(可...
    • 104 篇 电气工程
    • 92 篇 仪器科学与技术
    • 62 篇 化学工程与技术
    • 41 篇 交通运输工程
    • 33 篇 土木工程
    • 29 篇 建筑学
    • 27 篇 航空宇航科学与技...
    • 24 篇 安全科学与工程
  • 773 篇 理学
    • 464 篇 数学
    • 254 篇 物理学
    • 173 篇 生物学
    • 143 篇 统计学(可授理学、...
    • 59 篇 化学
    • 56 篇 系统科学
  • 262 篇 管理学
    • 150 篇 管理科学与工程(可...
    • 124 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 89 篇 医学
    • 77 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
  • 28 篇 法学
  • 27 篇 艺术学
    • 26 篇 设计学(可授艺术学...
  • 19 篇 农学
  • 11 篇 经济学
  • 10 篇 教育学
  • 10 篇 军事学
  • 5 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 215 篇 pattern recognit...
  • 200 篇 image processing
  • 138 篇 image segmentati...
  • 134 篇 feature extracti...
  • 80 篇 computer vision
  • 76 篇 shape
  • 67 篇 support vector m...
  • 67 篇 image reconstruc...
  • 67 篇 robustness
  • 65 篇 face recognition
  • 59 篇 cameras
  • 53 篇 image analysis
  • 53 篇 principal compon...
  • 52 篇 image edge detec...
  • 52 篇 image recognitio...
  • 51 篇 training
  • 48 篇 humans
  • 46 篇 object detection
  • 39 篇 data mining
  • 38 篇 pixel

机构

  • 262 篇 institute of ima...
  • 241 篇 institute of ima...
  • 74 篇 image processing...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 30 篇 inst. of image p...
  • 28 篇 institute of ima...
  • 25 篇 institute of med...
  • 23 篇 school of inform...
  • 21 篇 institute of ima...
  • 21 篇 pattern recognit...
  • 18 篇 intelligent reco...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 institute for pa...
  • 17 篇 laboratory of in...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 16 篇 school of softwa...
  • 15 篇 department of au...

作者

  • 197 篇 yang jie
  • 137 篇 jie yang
  • 68 篇 ping guo
  • 58 篇 yuncai liu
  • 53 篇 huang xiaolin
  • 46 篇 pengfei shi
  • 34 篇 yunhong wang
  • 33 篇 zhang tianxu
  • 32 篇 kropatsch walter...
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang yunhong
  • 24 篇 zhou yue
  • 23 篇 wang lisheng
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 20 篇 hong-bin shen
  • 20 篇 杨杰
  • 19 篇 h. bischof
  • 19 篇 xin yang

语言

  • 2,024 篇 英文
  • 81 篇 中文
  • 52 篇 其他
检索条件"机构=Pattern Recognition and Image Processing Processing Laboratory"
2154 条 记 录,以下是401-410 订阅
排序:
EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks
Research Square
收藏 引用
Research Square 2021年
作者: Meng, Lubin Huang, Jian Zeng, Zhigang Jiang, Xue Yu, Shan Jung, Tzyy-Ping Lin, Chin-Teng Chavarriaga, Ricardo Wu, Dongrui Ministry of Education Key Laboratory of Image Processing and Intelligent Control School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan China Brainnetome Center and National Laboratory of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China La Jolla CA United States Center for Advanced Neurological Engineering Institute of Engineering in Medicine UCSD La Jolla CA United States Centre of Artificial Intelligence Faculty of Engineering and Information Technology University of Technology Sydney Australia ZHAW DataLab Zürich University of Applied Sciences Winterthur8401 Switzerland
Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to the wide adoption of sophisticated machine learning approaches for decoding the EEG si... 详细信息
来源: 评论
Cross-receptive Focused Inference Network for Lightweight image Super-Resolution
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Zhou, Jiantao Yang, Jian Qi, Guo-Jun The Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The School of Communication and Information Engineering Shanghai University Shanghai200444 China Jiangsu Key Laboratory of Image and Video Understanding for Social Safety Nanjing University of Science and Technology Nanjing210094 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China The State Key Laboratory of Internet of Things for Smart City Department of Computer and Information Science Faculty of Science and Technology University of Macau 999078 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Research Center for Industries of the Future The School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States
Recently, Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks due to the ability of global feature extraction. However, the capabilities of Transformers that need ... 详细信息
来源: 评论
Sparse generalized canonical correlation analysis: Distributed alternating iteration based approach
arXiv
收藏 引用
arXiv 2020年
作者: Cai, Jia Lv, Kexin Huo, Junyi Huang, Xiaolin Yang, Jie School of Statistics and Mathematics Guangdong University of Finance & Economics Big Data and Educational Statistics Application Laboratory 21 Chisha Road Guangzhou Guangdong510320 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University MOE Key Laboratory of System Control and Information Processing 800 Dongchuan Road Shanghai200240 China School of Electronics and Computer Science University of Southampton University Road SouthamptonSO17 1BJ United Kingdom
Sparse canonical correlation analysis (CCA) is a useful statistical tool to detect latent information with sparse structures. However, sparse CCA works only for two datasets, i.e., there are only two views or two dist... 详细信息
来源: 评论
Multi-level graph convolutional network with automatic graph learning for hyperspectral image classification
arXiv
收藏 引用
arXiv 2020年
作者: Wan, Sheng Gong, Chen Pan, Shirui Yang, Jie Yang, Jian PCA Lab Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education Jiangsu Key Laboratory of Image Video Understanding for Social Security School of Computer Science and Engineering Nanjing University of Science and Technology Nanjing210094 China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Faculty of Information Technology Monash University ClaytonVIC3800 Australia
Nowadays, deep learning methods, especially the Graph Convolutional Network (GCN), have shown impressive performance in hyperspectral image (HSI) classification. However, the current GCN-based methods treat graph cons... 详细信息
来源: 评论
Web Page Classification Algorithm Based on Semi-Supervised Support Vector Machine  2
Web Page Classification Algorithm Based on Semi-Supervised S...
收藏 引用
2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018
作者: Huang, Wenqing You, Hui Zhejiang Sci-Tech University Institute of Computer Vision Image Processing and Pattern Recognition Acceptable School of Information Hangzhou China
Most web page classification algorithms are learning algorithms under the single-instance single-label framework. Multi-Instance Multi-Label learning is a new machine learning framework. MIMLSVM+ algorithm, using dege... 详细信息
来源: 评论
Prediction of σ54 promoters in prokaryotes based on SVM–Adaboost
Prediction of σ54 promoters in prokaryotes based on SVM–Ad...
收藏 引用
Chinese Automation Congress (CAC)
作者: Yongxian Fan Qingqi Zhu Chengwei Lv Xianyong Pan School of Computer and Information Security Guilin University of Electronic Technology Guilin Guangxi Key Laboratory of System Control and Information Processing Ministry of Education of China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China
σ 54 promoters are responsible for transcriptional carbon and nitrogen in prokaryotes. However, it is costly and difficult by experimental identification of them, especially in the postgenomic era with avalanche of ... 详细信息
来源: 评论
Efficient image Super-Resolution with Feature Interaction Weighted Hybrid Network
arXiv
收藏 引用
arXiv 2022年
作者: Li, Wenjie Li, Juncheng Gao, Guangwei Deng, Weihong Yang, Jian Qi, Guo-Jun Lin, Chia-Wen Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China Intelligent Visual Information Perception Laboratory Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China School of Communication and Information Engineering Shanghai University Shanghai200444 China School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China Research Center for Industries of the Future the School of Engineering Westlake University Hangzhou310024 China OPPO Research SeattleWA98101 United States Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Lightweight image super-resolution aims to reconstruct high-resolution images from low-resolution images using low computational costs. However, existing methods result in the loss of middle-layer features due to acti... 详细信息
来源: 评论
A Method for Authenticity Identification of Fritillaria Cirrhosa D. Don Based on Deep Learning  4
A Method for Authenticity Identification of Fritillaria Cirr...
收藏 引用
4th IEEE International Conference on image, Vision and Computing, ICIVC 2019
作者: Hu, Ke Hu, Pan Cao, Dong Yan, Xin Yu, Xi Liu, Chang Chengdu University College of Information Science and Engineering Chengdu China Key Laboratory of Pattern Recognition and Intelligent Information Processing of Sichuan Chengdu University Chengdu China Research Institute of Big Data Chengdu University China Chengdu Institute of Chinese Herbal Medicine China
Since the authentic Fritillaria Cirrhosa D. Don resources are scarce due to its high price and valuable medical uses, it is difficult to meet the clinical needs. Therefore, the problem of adulteration in the market is... 详细信息
来源: 评论
The effect of data augmentation on classification of atrial fibrillation in short single-lead ecg signals using deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Hatamian, Faezeh Nejati Ravikumar, Nishant Vesal, Sulaiman Kemeth, Felix P. Struck, Matthias Maier, Andreas Department of Image Processing and Medical Technology Fraunhofer Institute for Integrated Circuits IIS Erlangen Germany Pattern Recognition Lab Department of Computer Science Friedrich-Alexander University Erlangen-Nrnberg Erlangen Germany School of Computing LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds United Kingdom
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the... 详细信息
来源: 评论
Towards a unified quadrature framework for large-scale kernel machines
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Fanghui Huang, Xiaolin Chen, Yudong Suykens, Johan A.K. KU Leuven LeuvenB-3001 Belgium Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai200240 China Institute of Medical Robotics Shanghai Jiao Tong University Shanghai200240 China School of Operations Research and Information Engineering Cornell University IthacaNY14850 United States
In this paper, we develop a quadrature framework for large-scale kernel machines via a numerical integration representation. Considering that the integration domain and measure of typical kernels, e.g., Gaussian kerne... 详细信息
来源: 评论