咨询与建议

限定检索结果

文献类型

  • 1,494 篇 会议
  • 651 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 2,154 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,418 篇 工学
    • 823 篇 计算机科学与技术...
    • 709 篇 软件工程
    • 297 篇 信息与通信工程
    • 208 篇 机械工程
    • 207 篇 控制科学与工程
    • 204 篇 光学工程
    • 157 篇 生物工程
    • 154 篇 生物医学工程(可授...
    • 130 篇 电子科学与技术(可...
    • 104 篇 电气工程
    • 92 篇 仪器科学与技术
    • 62 篇 化学工程与技术
    • 41 篇 交通运输工程
    • 33 篇 土木工程
    • 29 篇 建筑学
    • 27 篇 航空宇航科学与技...
    • 24 篇 安全科学与工程
  • 773 篇 理学
    • 464 篇 数学
    • 254 篇 物理学
    • 173 篇 生物学
    • 143 篇 统计学(可授理学、...
    • 59 篇 化学
    • 56 篇 系统科学
  • 262 篇 管理学
    • 150 篇 管理科学与工程(可...
    • 124 篇 图书情报与档案管...
    • 24 篇 工商管理
  • 89 篇 医学
    • 77 篇 临床医学
    • 59 篇 基础医学(可授医学...
    • 48 篇 药学(可授医学、理...
  • 28 篇 法学
  • 27 篇 艺术学
    • 26 篇 设计学(可授艺术学...
  • 19 篇 农学
  • 11 篇 经济学
  • 10 篇 教育学
  • 10 篇 军事学
  • 5 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 215 篇 pattern recognit...
  • 200 篇 image processing
  • 138 篇 image segmentati...
  • 134 篇 feature extracti...
  • 80 篇 computer vision
  • 76 篇 shape
  • 67 篇 support vector m...
  • 67 篇 image reconstruc...
  • 67 篇 robustness
  • 65 篇 face recognition
  • 59 篇 cameras
  • 53 篇 image analysis
  • 53 篇 principal compon...
  • 52 篇 image edge detec...
  • 52 篇 image recognitio...
  • 51 篇 training
  • 48 篇 humans
  • 46 篇 object detection
  • 39 篇 data mining
  • 38 篇 pixel

机构

  • 262 篇 institute of ima...
  • 241 篇 institute of ima...
  • 74 篇 image processing...
  • 44 篇 institute of ima...
  • 35 篇 institute of ima...
  • 30 篇 inst. of image p...
  • 28 篇 institute of ima...
  • 25 篇 institute of med...
  • 23 篇 school of inform...
  • 21 篇 institute of ima...
  • 21 篇 pattern recognit...
  • 18 篇 intelligent reco...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 institute for pa...
  • 17 篇 laboratory of in...
  • 17 篇 institute of ima...
  • 17 篇 institute of ima...
  • 16 篇 school of softwa...
  • 15 篇 department of au...

作者

  • 197 篇 yang jie
  • 137 篇 jie yang
  • 68 篇 ping guo
  • 58 篇 yuncai liu
  • 53 篇 huang xiaolin
  • 46 篇 pengfei shi
  • 34 篇 yunhong wang
  • 33 篇 zhang tianxu
  • 32 篇 kropatsch walter...
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 wang yunhong
  • 24 篇 zhou yue
  • 23 篇 wang lisheng
  • 21 篇 liu yuncai
  • 21 篇 shi pengfei
  • 20 篇 hong-bin shen
  • 20 篇 杨杰
  • 19 篇 h. bischof
  • 19 篇 xin yang

语言

  • 2,024 篇 英文
  • 81 篇 中文
  • 52 篇 其他
检索条件"机构=Pattern Recognition and Image Processing Processing Laboratory"
2154 条 记 录,以下是421-430 订阅
排序:
Self-grouping convolutional neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Guo, Qingbei Wu, Xiao-Jun Kittler, Josef Feng, Zhiquan Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence Jiangnan University Wuxi214122 China Shandong Provincial Key Laboratory of Network based Intelligent Computing University of Jinan Jinan250022 China Centre for Vision Speech and Signal Processing University of Surrey GuildfordGU2 7XH United Kingdom
Although group convolution operators are increasingly used in deep convolutional neural networks to improve the computational efficiency and to reduce the number of parameters, most existing methods construct their gr... 详细信息
来源: 评论
The Effect of Data Augmentation on Classification of Atrial Fibrillation in Short Single-Lead ECG Signals Using Deep Neural Networks
The Effect of Data Augmentation on Classification of Atrial ...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: Faezeh Nejati Hatamian Nishant Ravikumar Sulaiman Vesal Felix P. Kemeth Matthias Struck Andreas Maier Department of Image Processing and Medical Technology Fraunhofer Institute for Integrated Circuits IIS Erlangen Germany Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB) School of Computing LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine School of Medicine University of Leeds United Kingdom Pattern Recognition Lab Friedrich-Alexander University Erlangen-Nürnberg Erlangen Germany
Cardiovascular diseases are the most common cause of mortality worldwide. Detection of atrial fibrillation (AF) in the asymptomatic stage can help prevent strokes. It also improves clinical decision making through the...
来源: 评论
A Hierarchical Model with Pseudoinverse Learning Algorithm Optimazation for Pulsar Candidate Selection
A Hierarchical Model with Pseudoinverse Learning Algorithm O...
收藏 引用
Congress on Evolutionary Computation
作者: Shijia Li Sibo Feng Ping Guo Qian Yin Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Pulsars search has always been one of the most concerned problem in the field of astronomy. Nowadays, with the development of astronomical instruments and observation technology, the amount of data is getting bigger a... 详细信息
来源: 评论
COVID-MTL: Multitask learning with shift3D and random-weighted loss for automated diagnosis and severity assessment of COVID-19
arXiv
收藏 引用
arXiv 2020年
作者: Bao, Guoqing Chen, Huai Liu, Tongliang Gong, Guanzhong Yin, Yong Wang, Lisheng Wang, Xiuying School of Computer Science The University of Sydney J12/1 Cleveland St Darlington SydneyNSW2008 Australia Department of Automation Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Department of Radiation Oncology Shandong Cancer Hospital and Institute Shandong First Medical University Shandong Academy of Medical Sciences Jinan250117 China
There is an urgent need for automated methods to assist accurate and effective assessment of COVID-19. Radiology and nucleic acid test (NAT) are complementary COVID-19 diagnosis methods. In this paper, we present an e... 详细信息
来源: 评论
A novel enhancement method for low illumination images based on microarray camera
收藏 引用
Applied Mathematics(A Journal of Chinese Universities) 2017年 第3期32卷 313-322页
作者: ZOU Jian-cheng ZHENG Wen-qi YANG Zhi-hui Institute of Image Processing and Pattern Recognition North China University of Technology Beijing 100144 China.
It is difficult but important to get clear information from the low illumination images. In recent years the research of the low illumination image enhancement has become a hot topic in image processing and computer v... 详细信息
来源: 评论
Alleviating class-wise gradient imbalance for pulmonary airway segmentation
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Hao Qin, Yulei Gu, Yun Xie, Fangfang Yang, Jie Sun, Jiayuan Yang, Guang-Zhong Institute of Medical Robotics Shanghai Jiao Tong University Shanghai China Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong Univeristy Shanghai China School of Biomedical Engineering Shanghai Jiao Tong Univeristy Shanghai China Department of Respiratory and Critical Care Medicine Department of Respiratory Endoscopy Shanghai Chest Hospital Shanghai Engineering Research Center of Respiratory Endoscopy Shanghai China
— Automated airway segmentation is a prerequisite for pre-operative diagnosis and intra-operative navigation for pulmonary intervention. Due to the small size and scattered spatial distribution of peripheral bronchi,... 详细信息
来源: 评论
Learning In-Place Residual Homogeneity for image Detail Enhancement
Learning In-Place Residual Homogeneity for Image Detail Enha...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal processing
作者: He Jiang HuangKai Cai Jie Yang Institute of Pattern Recognition and Image Processing Shanghai Jiaotong University China
In this paper, we put forward and demonstrate a novel method in image and video detail enhancement-- in-place residual homogeneity (IP). In-place residual homogeneity is a regular law we find in testing different bloc... 详细信息
来源: 评论
image synthesis with adversarial networks: A comprehensive survey and case studies
arXiv
收藏 引用
arXiv 2020年
作者: Shamsolmoali, Pourya Zareapoor, Masoumeh Granger, Eric Zhou, Huiyu Wang, Ruili Emre Celebi, M. Yang, Jie Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Laboratoire d’imagerie De vision et d’intelligence artificielle École de technologie supérieure Montreal Canada School of Informatics University of Leicester United Kingdom School of Natural and Computational Sciences Massey University Auckland New Zealand Department of Computer Science University of Central Arkansas United States
Generative Adversarial Networks (GANs) have been extremely successful in various application domains such as computer vision, medicine, and natural language processing. Moreover, transforming an object or person to a ... 详细信息
来源: 评论
AIM 2020 Challenge on image Extreme Inpainting  16th
AIM 2020 Challenge on Image Extreme Inpainting
收藏 引用
Workshops held at the 16th European Conference on Computer Vision, ECCV 2020
作者: Ntavelis, Evangelos Romero, Andrés Bigdeli, Siavash Timofte, Radu Hui, Zheng Wang, Xiumei Gao, Xinbo Shin, Chajin Kim, Taeoh Son, Hanbin Lee, Sangyoun Li, Chao Li, Fu He, Dongliang Wen, Shilei Ding, Errui Bai, Mengmeng Li, Shuchen Zeng, Yu Lin, Zhe Yang, Jimei Zhang, Jianming Shechtman, Eli Lu, Huchuan Zeng, Weijian Ni, Haopeng Cai, Yiyang Li, Chenghua Xu, Dejia Wu, Haoning Han, Yu Nadim, Uddin S. M. Jang, Hae Woong Ahmed, Soikat Hasan Yoon, Jungmin Jung, Yong Ju Li, Chu-Tak Liu, Zhi-Song Wang, Li-Wen Siu, Wan-Chi Lun, Daniel P. K. Suin, Maitreya Purohit, Kuldeep Rajagopalan, A.N. Narang, Pratik Mandal, Murari Chauhan, Pranjal Singh Computer Vision Lab ETH Zürich Zürich Switzerland CSEM Neuchâtel Switzerland School of Electronic Engineering Xidian University Xi’an China Image and Video Pattern Recognition Laboratory School of Electrical and Electronic Engineering Yonsei University Seoul Korea Republic of Baidu Inc. Beijing China Beijing China Dalian University of Technology Dalian China Adobe San Jose United States Rensselaer Polytechnic Institute Troy United States Peking University Beijing China Lab Gachon University Seongnam Korea Republic of Centre for Multimedia Signal Processing Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong China Indian Institute of Technology Madras Chennai India BITS Pilani Pilani India MNIT Jaipur Jaipur India
This paper reviews the AIM 2020 challenge on extreme image inpainting. This report focuses on proposed solutions and results for two different tracks on extreme image inpainting: classical image inpainting and semanti... 详细信息
来源: 评论
Pulsar candidate selection using ensemble networks for FAST drift-scan survey
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Hongfeng Zhu, Weiwei Guo, Ping Li, Di Feng, Sibo Yin, Qian Miao, Chenchen Tao, Zhenzhao Pan, Zhichen Wang, Pei Zheng, Xin Deng, Xiaodan Liu, Zhijie Xie, Xiaoyao Yu, Xuhong You, Shanping Zhang, Hui Image Processing and Pattern Recognition Laboratory College of Information Science and Technology Beijing Normal University Beijing100875 China CAS Key Laboratory of FAST Chinese Academy of Science Beijing100101 China School of Information Management Dezhou University Dezhou253023 China Image Processing and Pattern Recognition Laboratory School of Systems Science Beijing Normal University Beijing100875 China University of Chinese Academy of Sciences Beijing100049 China Key Laboratory of Information and Computing Science Guizhou Province Guizhou Normal University Guiyang550001 China School of Physics and Electronic Science Guizhou Normal University Guiyang550001 China
The Commensal Radio Astronomy Five-hundred-meter Aperture Spherical radio Telescope (FAST) Survey (CRAFTS) utilizes the novel drift-scan commensal survey mode of FAST and can generate billions of pulsar candidate sign... 详细信息
来源: 评论