咨询与建议

限定检索结果

文献类型

  • 1,495 篇 会议
  • 658 篇 期刊文献
  • 9 册 图书

馆藏范围

  • 2,162 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,421 篇 工学
    • 809 篇 计算机科学与技术...
    • 694 篇 软件工程
    • 299 篇 信息与通信工程
    • 212 篇 机械工程
    • 208 篇 控制科学与工程
    • 198 篇 光学工程
    • 156 篇 生物工程
    • 151 篇 生物医学工程(可授...
    • 140 篇 电子科学与技术(可...
    • 116 篇 电气工程
    • 97 篇 仪器科学与技术
    • 62 篇 化学工程与技术
    • 41 篇 交通运输工程
    • 32 篇 土木工程
    • 28 篇 建筑学
    • 27 篇 航空宇航科学与技...
    • 24 篇 材料科学与工程(可...
    • 24 篇 安全科学与工程
  • 771 篇 理学
    • 463 篇 数学
    • 251 篇 物理学
    • 173 篇 生物学
    • 143 篇 统计学(可授理学、...
    • 60 篇 化学
    • 57 篇 系统科学
  • 264 篇 管理学
    • 147 篇 管理科学与工程(可...
    • 128 篇 图书情报与档案管...
  • 86 篇 医学
    • 75 篇 临床医学
    • 56 篇 基础医学(可授医学...
    • 47 篇 药学(可授医学、理...
  • 29 篇 艺术学
    • 28 篇 设计学(可授艺术学...
  • 28 篇 法学
  • 19 篇 农学
  • 11 篇 经济学
  • 10 篇 教育学
  • 10 篇 军事学
  • 5 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学

主题

  • 216 篇 pattern recognit...
  • 200 篇 image processing
  • 134 篇 image segmentati...
  • 134 篇 feature extracti...
  • 78 篇 computer vision
  • 77 篇 shape
  • 68 篇 support vector m...
  • 67 篇 robustness
  • 66 篇 face recognition
  • 65 篇 image reconstruc...
  • 59 篇 cameras
  • 54 篇 principal compon...
  • 53 篇 image analysis
  • 53 篇 image recognitio...
  • 52 篇 image edge detec...
  • 51 篇 training
  • 49 篇 humans
  • 47 篇 object detection
  • 39 篇 data mining
  • 38 篇 pixel

机构

  • 270 篇 institute of ima...
  • 244 篇 institute of ima...
  • 74 篇 image processing...
  • 44 篇 institute of ima...
  • 39 篇 institute of ima...
  • 29 篇 institute of ima...
  • 26 篇 institute of med...
  • 23 篇 school of inform...
  • 21 篇 institute of ima...
  • 21 篇 pattern recognit...
  • 19 篇 institute for pa...
  • 19 篇 inst. of image p...
  • 18 篇 intelligent reco...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 laboratory of in...
  • 17 篇 institute of ima...
  • 16 篇 department of au...
  • 16 篇 school of softwa...
  • 15 篇 pattern recognit...

作者

  • 195 篇 yang jie
  • 138 篇 jie yang
  • 68 篇 ping guo
  • 58 篇 yuncai liu
  • 54 篇 huang xiaolin
  • 46 篇 pengfei shi
  • 34 篇 yunhong wang
  • 33 篇 zhang tianxu
  • 32 篇 kropatsch walter...
  • 31 篇 guo ping
  • 25 篇 qian yin
  • 25 篇 zhou yue
  • 25 篇 wang yunhong
  • 23 篇 wang lisheng
  • 22 篇 liu jian
  • 21 篇 liu yuncai
  • 20 篇 hong-bin shen
  • 20 篇 杨杰
  • 20 篇 shi pengfei
  • 19 篇 h. bischof

语言

  • 1,979 篇 英文
  • 101 篇 其他
  • 86 篇 中文
检索条件"机构=Pattern Recognition and Image Processing Processing Laboratory"
2162 条 记 录,以下是681-690 订阅
排序:
Exponential image Enhancement in Daytime Fog Conditions
Exponential Image Enhancement in Daytime Fog Conditions
收藏 引用
17th International IEEE Conference on Intelligent Transportation Systems & The Asia-Pacific Council on Systems Engineering Conference 2014
作者: Mihai Negru Sergiu Nedevschi Radu Ioan Peter Image Processing and Pattern Recognition Group Computer Science DepartmentTechnical University of Cluj-Napoca head of the Image Processing and Pattern Recognition Group Computer Science DepartmentTechnical University of Cluj-Napoca Mathematics Department Technical University of Cluj-Napoca
The images captured in fog conditions have degraded contrast,that makes current image processing applications sensitive and error *** propose in this paper an efficient single image enhancement algorithm suitable for ... 详细信息
来源: 评论
On weak Sidon sequences
收藏 引用
Journal of Combinatorial Mathematics and Combinatorial Computing 2014年 91卷 107-113页
作者: Xu, Xiaodong Liang, Meilian Shao, Zehui Guangxi Academy of Sciences Nanning530007 China School of Mathematics and Information Science Guangxi University Nanning530004 China Key Laboratory of Pattern Recognition and Intelligent Information Processing Institutions of Higher Education of Sichuan Province China School of Information Science and Technology Chengdu University Chengdu610106 China
A sequence {ai |1 ≤ i ≤ k} of integers is a weak Sidon sequence if the sums ai + aj are all different for any i i |1 ≤ i ≤ k} such that 1 ≤ a1k ≤ n. Let the weak Sidon number G(k) = min{n | g(n) = k}. In this no... 详细信息
来源: 评论
Human activity recognition in images using SVMs and geodesics on smooth manifolds  14
Human activity recognition in images using SVMs and geodesic...
收藏 引用
8th ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2014
作者: Yun, Yixiao Fu, Keren Gu, Irene Yu-Hua Aghajan, Hamid Yang, Jie Dept. of Signals and Systems Chalmers University of Technology Sweden Inst. of Image Processing and Pattern Recognition Shanghai Jiao Tong University China IMinds Ghent University Belgium AIR Lab. Stanford University United States
This paper addresses the problem of human activity recognition in still images. We propose a novel method that focuses on human-object interaction for feature representation of activities on Riemannian manifolds, and ... 详细信息
来源: 评论
Adaptive regularization deconvolution extraction algorithm for spectral signal processing
Adaptive regularization deconvolution extraction algorithm f...
收藏 引用
IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA)
作者: Jian Yu Ping Guo A-li Luo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China National Astronomical Observatories Chinese Academy of Sciences Beijing China
Deconvolution is known as an ill-posed problem. In order to solve such a problem, a regularization method is needed to constrain the solution space and find a plausible and stable solution. In practice, it is very com... 详细信息
来源: 评论
A novel level set method for remote sensing image based on K-means
A novel level set method for remote sensing image based on K...
收藏 引用
2014 International Conference on Applied Mechanics, Mechatronics and Intelligent System, AMMIS 2014
作者: Xu, Er Jing Jia, Zhen Hong Wang, Lie Jun Hu, Ying Jie Yang, Jie College of Information science and engineering Xinjiang University Urumchi 830046 China Knowledge Engineering and Research Discovery Institute Auckland University of Technology Auckland New Zealand The Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai 200240 China
Due to the characteristic of remote sensing image, we propose a novel method based on K-means algorithm also with the improved multi-phrase level set model. Comparing with the classical multi-phase C-V model, the impr... 详细信息
来源: 评论
ACTION recognition BASED ON KINEMATIC REPRESENTATION OF VIDEO DATA
ACTION RECOGNITION BASED ON KINEMATIC REPRESENTATION OF VIDE...
收藏 引用
IEEE International Conference on image processing
作者: Xin Sun Di Huang Yunhong Wang Jie Qin Laboratory of Intelligent Recognition and Image Processing School of Computer Science and Engineering Beihang University
The local space-time feature is an effective way to represent video data and achieves state-of-the-art performance in action recognition. However, in majority of cases, it only captures the static or dynamic cues of t... 详细信息
来源: 评论
Comparison of appearance-based and geometry-based bubble detectors
Lecture Notes in Computer Science (including subseries Lectu...
收藏 引用
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2014年 8671卷 610-617页
作者: Strokina, Nataliya Juránek, Roman Eerola, Tuomas Lensu, Lasse Zemčik, Pavel Kälviäinen, Heikki Tampere University of Technology Department of Signal Processing P.O. Box 527 Tampere33101 Finland Brno University of Technology Department of Computer Graphics and Multimedia Brno Czech Republic Lappeenranta University of Technology Machine Vision and Pattern Recognition Laboratory P.O. Box 20 Lappeenranta53851 Finland
Bubble detection is a complicated tasks since varying lighting conditions changes considerably the appearance of bubbles in liquid. The two common techniques to detect circular objects such as bubbles, the geometry-ba... 详细信息
来源: 评论
Challenging the recognition of facial expression via deep learning
Challenging the recognition of facial expression via deep le...
收藏 引用
作者: Hu, De Kun Liu, Yong Hong Zhang, Li Duan, Gui Duo Key Laboratory of Pattern Recognition and Intelligent Information Processing Institutions of Higher Education of Sichuan Province Chengdu University Chengdu 610106 China School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu 610054 China
A deep Neural Network model was trained to classify the facial expression in unconstrained images, which comprises nine layers, including input layer, convolutional layer, pooling layer, fully connected layers and out... 详细信息
来源: 评论
Average Weight Optimization RBPF Method for Target Tracking in Multi-Sensor Observations
收藏 引用
电子学报(英文版) 2013年 第2期22卷 401-404页
作者: LIU Xianxing HU Zhentao LI Jie Institute of Image Processing and Pattern Recognition Henan University Kaifeng 475004 China
The reasonable design of particle filter framework in multi-sensor observation system is the key to expand the application domain of sampling nonlinear filters. Aiming at the effective realization of particle filter f... 详细信息
来源: 评论
Color-Coded Imaging with Adaptive Multiscale Spatial Filtering
Color-Coded Imaging with Adaptive Multiscale Spatial Filteri...
收藏 引用
第三届健康信息学国际学术会议(HIS 2014)
作者: Xinhong Zhang Xiaopan Chen Congcong Li Fan Zhang Software School Henan University School of Computer and Information Engineering Henan University Institute of Image Processing and Pattern Recognition Henan University
Digital subtraction angiography has become one of the most important approaches to artery disease diagnosis and treatmentDoctors implement diagnose and treatment by subjective analysis of the DSA series,and the result... 详细信息
来源: 评论