咨询与建议

限定检索结果

文献类型

  • 206 篇 会议
  • 120 篇 期刊文献

馆藏范围

  • 326 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 206 篇 工学
    • 137 篇 计算机科学与技术...
    • 114 篇 软件工程
    • 42 篇 信息与通信工程
    • 38 篇 生物工程
    • 28 篇 控制科学与工程
    • 23 篇 机械工程
    • 20 篇 光学工程
    • 13 篇 化学工程与技术
    • 8 篇 生物医学工程(可授...
    • 6 篇 仪器科学与技术
    • 5 篇 电气工程
    • 5 篇 建筑学
    • 5 篇 土木工程
    • 5 篇 交通运输工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 安全科学与工程
    • 3 篇 材料科学与工程(可...
  • 118 篇 理学
    • 48 篇 数学
    • 40 篇 生物学
    • 37 篇 物理学
    • 19 篇 统计学(可授理学、...
    • 11 篇 系统科学
    • 10 篇 化学
  • 79 篇 管理学
    • 43 篇 管理科学与工程(可...
    • 39 篇 图书情报与档案管...
    • 10 篇 工商管理
  • 10 篇 法学
    • 10 篇 社会学
  • 4 篇 医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 临床医学
  • 3 篇 艺术学
    • 3 篇 设计学(可授艺术学...
  • 1 篇 经济学
  • 1 篇 教育学
  • 1 篇 文学
  • 1 篇 农学

主题

  • 26 篇 feature extracti...
  • 17 篇 pattern recognit...
  • 17 篇 training
  • 15 篇 speech recogniti...
  • 14 篇 semantics
  • 11 篇 face recognition
  • 10 篇 image segmentati...
  • 9 篇 intelligent syst...
  • 8 篇 data mining
  • 8 篇 visualization
  • 8 篇 image classifica...
  • 7 篇 deep neural netw...
  • 7 篇 convolution
  • 7 篇 computer vision
  • 7 篇 character recogn...
  • 6 篇 hidden markov mo...
  • 6 篇 vectors
  • 6 篇 databases
  • 6 篇 machine learning
  • 6 篇 histograms

机构

  • 72 篇 pattern recognit...
  • 37 篇 pattern recognit...
  • 24 篇 pattern recognit...
  • 20 篇 pattern recognit...
  • 16 篇 the pattern reco...
  • 10 篇 guizhou key labo...
  • 9 篇 school of comput...
  • 8 篇 pattern recognit...
  • 6 篇 school of comput...
  • 6 篇 pattern recognit...
  • 5 篇 huawei beijing r...
  • 5 篇 department of st...
  • 4 篇 beijing academy ...
  • 4 篇 national lab of ...
  • 4 篇 university of ch...
  • 4 篇 department of st...
  • 4 篇 pattern recognit...
  • 4 篇 center for resea...
  • 4 篇 beijing universi...
  • 3 篇 department of el...

作者

  • 46 篇 guo jun
  • 44 篇 jun guo
  • 40 篇 ma zhanyu
  • 24 篇 honggang zhang
  • 19 篇 zhanyu ma
  • 19 篇 gang liu
  • 19 篇 deng weihong
  • 16 篇 zhang chuang
  • 13 篇 bin zhang
  • 12 篇 chang dongliang
  • 12 篇 liu gang
  • 12 篇 guohui li
  • 11 篇 wu ming
  • 10 篇 chuang zhang
  • 10 篇 li xiaoxu
  • 10 篇 song yi-zhe
  • 9 篇 yang yang
  • 9 篇 zhang honggang
  • 9 篇 zhiqing lin
  • 9 篇 du ruoyi

语言

  • 314 篇 英文
  • 10 篇 中文
  • 4 篇 其他
检索条件"机构=Pattern Recognition and Intelligent System"
326 条 记 录,以下是91-100 订阅
排序:
PropagationNet: Propagate Points to Curve to Learn Structure Information
PropagationNet: Propagate Points to Curve to Learn Structure...
收藏 引用
Conference on Computer Vision and pattern recognition (CVPR)
作者: Xiehe Huang Weihong Deng Haifeng Shen Xiubao Zhang Jieping Ye Pattern Recognition & Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications AI Labs DiDi Chuxing
Deep learning technique has dramatically boosted the performance of face alignment algorithms. However, due to large variability and lack of samples, the alignment problem in unconstrained situations, e.g. large head ... 详细信息
来源: 评论
A Simple Scheme to Amplify Inter-Class Discrepancy for Improving Few-Shot Fine-Grained Image Classification
SSRN
收藏 引用
SSRN 2023年
作者: Li, Xiaoxu Guo, Zijie Zhu, Rui Ma, Zhanyu Guo, Jun Xue, Jing-Hao School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Faculty of Actuarial Science and Insurance Bayes Business School City University of London LondonEC1Y 8TZ United Kingdom Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Department of Statistical Science University College London LondonWC1E 6BT United Kingdom
Few-shot image classification is a challenging topic in pattern recognition and computer vision. Few-shot fine-grained image classification is even more challenging, due to not only the few shots of labelled samples b... 详细信息
来源: 评论
Attention-Guided Multi-scale Interaction Network for Face Super-Resolution
arXiv
收藏 引用
arXiv 2024年
作者: Wan, Xujie Li, Wenjie Gao, Guangwei Lu, Huimin Yang, Jian Lin, Chia-Wen The Institute of Advanced Technology Nanjing University of Posts and Telecommunications Nanjing210046 China Key Laboratory of Artificial Intelligence Ministry of Education Shanghai200240 China The Provincial Key Laboratory for Computer Information Processing Technology Soochow University Suzhou215006 China The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100080 China The School of Automation Southeast University Nanjing210096 China The School of Computer Science and Technology Nanjing University of Science and Technology Nanjing210094 China The Department of Electrical Engineering National Tsing Hua University Hsinchu30013 Taiwan
Recently, CNN and Transformer hybrid networks demonstrated excellent performance in face super-resolution (FSR) tasks. Since numerous features at different scales in hybrid networks, how to fuse these multi-scale feat... 详细信息
来源: 评论
SRML: Structure-relation mutual learning network for few-shot image classification
收藏 引用
pattern recognition 2025年 168卷
作者: Li, Xiaoxu Wang, Lang Zhu, Rui Ma, Zhanyu Cao, Jie Xue, Jing-Hao School of Computer and Communication Lanzhou University of Technology Lanzhou730050 China Faculty of Actuarial Science and Insurance Bayes Business School City St George's University of London LondonEC1Y 8TZ United Kingdom Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Lanzhou City University Lanzhou730050 China Department of Statistical Science University College London LondonWC1E 6BT United Kingdom
Few-shot image classification aims at tackling a challenging but practical classification setting, where only few labelled images are available for training. Metric-based methods are main-stream solutions for few-shot... 详细信息
来源: 评论
Deep Metric Learning for Few-Shot Image Classification: A Review of Recent Developments
arXiv
收藏 引用
arXiv 2021年
作者: Li, Xiaoxu Yang, Xiaochen Ma, Zhanyu Xue, Jing-Hao School of Computer and Communication Lanzhou University of Technology China Pattern Recognition and Intelligent System Laboratory School of Information and Communication Engineering Beijing University of Posts and Telecommunications China School of Mathematics and Statistics University of Glasgow United Kingdom Department of Statistical Science University College London United Kingdom
Few-shot image classification is a challenging problem that aims to achieve the human level of recognition based only on a small number of training images. One main solution to few-shot image classification is deep me... 详细信息
来源: 评论
Your "Flamingo" is My "Bird": Fine-grained, or not
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Pang, Kaiyue Zheng, Yixiao Ma, Zhanyu Song, Yi-Zhe Guo, Jun The Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China SketchX CVSSP University of Surrey London United Kingdom
Whether what you see in Figure 1 is a "flamingo" or a "bird", is the question we ask in this paper. While fine-grained visual classification (FGVC) strives to arrive at the former, for the majority... 详细信息
来源: 评论
GPCA: A probabilistic framework for Gaussian process embedded channel attention
arXiv
收藏 引用
arXiv 2020年
作者: Xie, Jiyang Ma, Zhanyu Chang, Dongliang Zhang, Guoqiang Guo, Jun Pattern Recognition and Intelligent System Lab. School of Artificial Intelligence Beijing University of Posts and Telecommunications China School of Electrical and Data Engineering University of Technology Sydney Australia
Channel attention mechanisms have been commonly applied in many visual tasks for effective performance improvement. It is able to reinforce the informative channels as well as to suppress the useless channels. Recentl... 详细信息
来源: 评论
Competing Ratio Loss for Multi-class image Classification  34
Competing Ratio Loss for Multi-class image Classification
收藏 引用
34th IEEE International Conference on Visual Communications and Image Processing, VCIP 2019
作者: Zhang, Ke Wang, Xinsheng Guo, Yurong Zhao, Zhenbing Ma, Zhanyu North China Electric Power University Department of Electronic and Communication Engineering Hebei China Pattern Recognition and Intelligent System Laboratory Beijing University of Posts and Telecommunications Beijing China
Cross-entropy loss function (CEL) is widely used for training a multi-class classification deep convolutional neural network (DCNN). While CEL has been successfully implemented in image classification tasks, it only f... 详细信息
来源: 评论
Deep zero-shot learning for scene sketch
arXiv
收藏 引用
arXiv 2019年
作者: Xie, Yao Xu, Peng Ma, Zhanyu Pattern Recognition and Intelligent System Lab. Beijing University of Posts and Telecommunications
We introduce a novel problem of scene sketch zero-shot learning (SSZSL), which is a challenging task, since (i) different from photo, the gap between common semantic domain (e.g., word vector) and sketch is too huge t... 详细信息
来源: 评论
Mind the gap: Enlarging the domain gap in open set domain adaptation
arXiv
收藏 引用
arXiv 2020年
作者: Chang, Dongliang Sain, Aneeshan Ma, Zhanyu Song, Yi-Zhe Guo, Jun Pattern Recognition and Intelligent System Laboratory School of Artificial Intelligence Beijing University of Posts and Telecommunications Beijing100876 China Centre for Vision Speech and Signal Processing University of Surrey London United Kingdom
Unsupervised domain adaptation aims to leverage labeled data from a source domain to learn a classifier for an unlabeled target domain. Among its many variants, open set domain adaptation (OSDA) is perhaps the most ch... 详细信息
来源: 评论