咨询与建议

限定检索结果

文献类型

  • 14 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 10 篇 计算机科学与技术...
    • 9 篇 软件工程
    • 5 篇 生物工程
    • 4 篇 信息与通信工程
    • 3 篇 光学工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电气工程
    • 2 篇 化学工程与技术
    • 2 篇 生物医学工程(可授...
    • 1 篇 电子科学与技术(可...
    • 1 篇 农业工程
    • 1 篇 安全科学与工程
  • 6 篇 管理学
    • 5 篇 图书情报与档案管...
    • 1 篇 公共管理
  • 5 篇 理学
    • 5 篇 生物学
    • 2 篇 化学
    • 1 篇 数学
    • 1 篇 物理学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...

主题

  • 4 篇 image segmentati...
  • 2 篇 tools
  • 2 篇 image denoising
  • 2 篇 machine learning
  • 2 篇 discrete fourier...
  • 2 篇 convolutional ne...
  • 2 篇 deterioration
  • 1 篇 genetic algorith...
  • 1 篇 noise reduction
  • 1 篇 clustering
  • 1 篇 semantic segment...
  • 1 篇 deep neural netw...
  • 1 篇 teeth
  • 1 篇 task analysis
  • 1 篇 sensitivity
  • 1 篇 automatic calibr...
  • 1 篇 computer archite...
  • 1 篇 microsoft window...
  • 1 篇 microscopy
  • 1 篇 diagnostic radio...

机构

  • 3 篇 pattern recognit...
  • 3 篇 machine learning...
  • 2 篇 department of co...
  • 2 篇 pattern recognit...
  • 2 篇 departamento de ...
  • 2 篇 faculty of agric...
  • 2 篇 university of fr...
  • 2 篇 document image a...
  • 2 篇 eislab machine l...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 the school of in...
  • 1 篇 institute of adv...
  • 1 篇 institute of pub...

作者

  • 4 篇 liwicki marcus
  • 3 篇 seuret mathias
  • 2 篇 pondenkandath vi...
  • 2 篇 mathias seuret
  • 2 篇 nikolaidou konst...
  • 2 篇 rolf ingold
  • 2 篇 ingold rolf
  • 2 篇 michele alberti
  • 2 篇 mokayed hamam
  • 2 篇 calderon saul
  • 2 篇 alberti michele
  • 2 篇 marcus liwicki
  • 1 篇 keogh ruth
  • 1 篇 lenzi jacopo
  • 1 篇 debela sisay abe...
  • 1 篇 krishan kewal
  • 1 篇 abbafati cristia...
  • 1 篇 charan jaykaran
  • 1 篇 ghafourifard man...
  • 1 篇 khader yousef sa...

语言

  • 21 篇 英文
检索条件"机构=Pattern Recognition and Machine Learning Group"
21 条 记 录,以下是1-10 订阅
排序:
A survey of historical document image datasets
A survey of historical document image datasets
收藏 引用
作者: Nikolaidou, Konstantina Seuret, Mathias Mokayed, Hamam Liwicki, Marcus EISLAB Machine Learning Group Luleå University of Technology Aurorum 1 Norrbotten Luleå97187 Sweden Pattern Recognition Lab Computer Vision Group Friedrich-Alexander-Universität Martensstr. 3 Bavaria Erlangen91058 Germany
This paper presents a systematic literature review of image datasets for document image analysis, focusing on historical documents, such as handwritten manuscripts and early prints. Finding appropriate datasets for hi... 详细信息
来源: 评论
Deep Multi-View Multiclass Twin Support Vector machines
SSRN
收藏 引用
SSRN 2022年
作者: Xie, Xijiong Li, Yanfeng Sun, Shiliang The school of Information Science and Engineering Ningbo University China The School of Computer Science and Technology The Head of the Pattern Recognition Machine Learning Research Group East China Normal University China
Multi-view learning (MVL) is a rapidly evolving direction in the field of machine learning. Despite the positive results, most algorithms that combine multi-view learning with twin support vector machines (TSVM) focus... 详细信息
来源: 评论
A Survey of Historical Document Image Datasets
arXiv
收藏 引用
arXiv 2022年
作者: Nikolaidou, Konstantina Seuret, Mathias Mokayed, Hamam Liwicki, Marcus EISLAB Machine Learning Group Luleå University of Technology Aurorum 1 Norrbotten Luleå97187 Sweden Pattern Recognition Lab Computer Vision Group Friedrich-Alexander-Universität Martensstr. 3 Bavaria Erlangen91058 Germany
This paper presents a systematic literature review of image datasets for document image analysis, focusing on historical documents, such as handwritten manuscripts and early prints. Finding appropriate datasets for hi... 详细信息
来源: 评论
Labeling, cutting, grouping: An efficient text line segmentation method for medieval manuscripts  15
Labeling, cutting, grouping: An efficient text line segmenta...
收藏 引用
15th IAPR International Conference on Document Analysis and recognition, ICDAR 2019
作者: Alberti, Michele Vogtlin, Lars Pondenkandath, Vinaychandran Seuret, Mathias Ingold, Rolf Liwicki, Marcus University of Fribourg Switzerland Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Machine Learning Group Luleå University of Technology Sweden
This paper introduces a new way for text-line extraction by integrating deep-learning based pre-classification and state-of-the-art segmentation methods. Text-line extraction in complex handwritten documents poses a s... 详细信息
来源: 评论
Trainable Spectrally Initializable Matrix Transformations in Convolutional Neural Networks
Trainable Spectrally Initializable Matrix Transformations in...
收藏 引用
International Conference on pattern recognition
作者: Michele Alberti Angela Botros Narayan Schutz Rolf Ingold Marcus Liwicki Mathias Seuret Document Image and Voice Analysis Group (DIVA) University of Fribourg Switzerland V7 Ltd London United Kingdom ARTORG Center for Biomedical Engineering Research University of Bern Switzerland EISLAB Machine Learning Luleå University of Technology Sweden Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany
In this work, we introduce a new architectural component to Neural Network (NN), i.e., trainable and spectrally initializable matrix transformations on feature maps. While previous literature has already demonstrated ... 详细信息
来源: 评论
A Q-learning-based smart clustering routing method in flying Ad Hoc networks
收藏 引用
Journal of King Saud University - Computer and Information Sciences 2024年 第1期36卷
作者: Hosseinzadeh, Mehdi Tanveer, Jawad Rahmani, Amir Masoud Aurangzeb, Khursheed Yousefpoor, Efat Yousefpoor, Mohammad Sadegh Darwesh, Aso Lee, Sang-Woong Fazlali, Mahmood Institute of Research and Development Duy Tan University Da Nang Viet Nam School of Medicine and Pharmacy Duy Tan University Da Nang Viet Nam Department of Computer Science and Engineering Sejong University Seoul 05006 South Korea Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan Department of Computer Engineering College of Computer and Information Sciences King Saud University P.O. Box 51178 Riyadh 11543 Saudi Arabia Department of Computer Engineering Dezful Branch Islamic Azad University Dezful Iran Department of Information Technology University of Human Development Sulaymaniyah Iraq Pattern Recognition and Machine Learning Lab Gachon University 1342 Seongnamdaero Sujeonggu Seongnam 13120 South Korea Cybersecurity and Computing Systems Research Group School of Physics Engineering and Computer Science University of Hertfordshire Hertfordshire AL10 9AB United Kingdom
Flying ad hoc networks (FANETs) have particular importance in various military and civilian applications due to their specific features, including frequent topological changes, the movement of drones in a three-dimens... 详细信息
来源: 评论
Labeling, cutting, grouping: An efficient text line segmentation method for medieval manuscripts
arXiv
收藏 引用
arXiv 2019年
作者: Alberti, Michele Vögtlin, Lars Pondenkandath, Vinaychandran Seurety, Mathias Ingold, Rolf Liwicki, Marcus University of Fribourg Switzerland Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Machine Learning Group Luleå University of Technology Sweden
This paper introduces a new way for text-line extraction by integrating deep-learning based pre-classification and state-of-the-art segmentation methods. Text-line extraction in complex handwritten documents poses a s... 详细信息
来源: 评论
A First Glance to the Quality Assessment of Dental Photostimulable Phosphor Plates with Deep learning
A First Glance to the Quality Assessment of Dental Photostim...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ariana Bermudez Saul Calderon-Ramirez Trevor Thang Pascal Tyrrell Armaghan Moemeni Shengxiang Yang Jordina Torrents-Barrena School of Computing Costa Rica Institute of Technology Pattern Recognition and Machine Learning Group Costa Rica Centre for Computational Intelligence (CCI) De Montfort University United Kingdom Faculty of Dentistry University of Toronto Canada Department of Medical Imaging University of Toronto Canada University of Nottingham United Kingdom Department of Mathematics and Computer Engineering Universitat Rovira i Virgili Spain
Photostimulable Phosphor Plates are commonly used in digital X-ray imaging for dentistry. During its usage, these plates get damaged, influencing the diagnosis performance and confidence of the dentistry professional.... 详细信息
来源: 评论
DNLM-MA-P: A Parallelization of the Deceived Non Local Means Filter with Moving Average and Symmetric Weighting
DNLM-MA-P: A Parallelization of the Deceived Non Local Means...
收藏 引用
2018 IEEE International Work Conference on Bioinspired Intelligence, IWOBI 2018
作者: Calderon, Saul Castro, Jorge Zurnbado, Manuel Pattern Recognition and Machine Learning Group School of Computing Costa Rica Institute of Technology Costa Rica Advanced Computing Laboratory Costa Rica National High Technology Center Costa Rica
This paper presents a novel computational optimization of the deceived non local means filter using moving average and symmetric weighting. The proposed optimization is compared with different approaches that reduce t... 详细信息
来源: 评论
Labeling, Cutting, grouping: An Efficient Text Line Segmentation Method for Medieval Manuscripts
Labeling, Cutting, Grouping: An Efficient Text Line Segmenta...
收藏 引用
International Conference on Document Analysis and recognition
作者: Michele Alberti Lars Vögtlin Vinaychandran Pondenkandath Mathias Seuret Rolf Ingold Marcus Liwicki Document Image and Voice Analysis Group (DIVA) University of Fribourg Switzerland University of Fribourg Fribourg Switzerland Pattern Recognition Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Machine Learning Group Luleå University of Technology Sweden
This paper introduces a new way for text-line extraction by integrating deep-learning based pre-classification and state-of-the-art segmentation methods. Text-line extraction in complex handwritten documents poses a s... 详细信息
来源: 评论