The Music to Score Conversion (MSC) project focuses on bridging the gap between auditory and visual representations of music. It uses signal processing techniques for the conversion such as pitch estimation, onset det...
详细信息
We propose to find optimal value of refresh time of fault tolerant k-edge connected mobile ad-hoc networks. For study the FGSS algorithm is taken for topology control. The algorithm runs periodically on individual nod...
详细信息
The static nature of cyber defense systems gives attackers a sufficient amount of time to explore and further exploit the vulnerabilities of information technology *** this paper,we investigate a problem where multiag...
详细信息
The static nature of cyber defense systems gives attackers a sufficient amount of time to explore and further exploit the vulnerabilities of information technology *** this paper,we investigate a problem where multiagent sys-tems sensing and acting in an environment contribute to adaptive cyber *** present a learning strategy that enables multiple agents to learn optimal poli-cies using multiagent reinforcement learning(MARL).Our proposed approach is inspired by the multiarmed bandits(MAB)learning technique for multiple agents to cooperate in decision making or to work *** study a MAB approach in which defenders visit a system multiple times in an alternating fash-ion to maximize their rewards and protect their *** find that this game can be modeled from an individual player’s perspective as a restless MAB *** discover further results when the MAB takes the form of a pure birth process,such as a myopic optimal policy,as well as providing environments that offer the necessary incentives required for cooperation in multiplayer projects.
The promotion and application of model-based systems engineering (MBSE) suffer from the lack of effective sharing of research and design (R&D) resources among enterprises in the networked collaborative design envi...
详细信息
End-to-end training has emerged as a prominent trend in speech recognition, with Conformer models effectively integrating Transformer and CNN architectures. However, their complexity and high computational cost pose d...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing huma...
详细信息
Improving website security to prevent malicious online activities is crucial,and CAPTCHA(Completely Automated Public Turing test to tell computers and Humans Apart)has emerged as a key strategy for distinguishing human users from automated ***-based CAPTCHAs,designed to be easily decipherable by humans yet challenging for machines,are a common form of this ***,advancements in deep learning have facilitated the creation of models adept at recognizing these text-based CAPTCHAs with surprising *** our comprehensive investigation into CAPTCHA recognition,we have tailored the renowned UpDown image captioning model specifically for this *** approach innovatively combines an encoder to extract both global and local features,significantly boosting the model’s capability to identify complex details within CAPTCHA *** the decoding phase,we have adopted a refined attention mechanism,integrating enhanced visual attention with dual layers of Long Short-Term Memory(LSTM)networks to elevate CAPTCHA recognition *** rigorous testing across four varied datasets,including those from Weibo,BoC,Gregwar,and Captcha 0.3,demonstrates the versatility and effectiveness of our *** results not only highlight the efficiency of our approach but also offer profound insights into its applicability across different CAPTCHA types,contributing to a deeper understanding of CAPTCHA recognition technology.
As a result of its aggressive nature and late identification at advanced stages, lung cancer is one of the leading causes of cancer-related deaths. Lung cancer early diagnosis is a serious and difficult challenge that...
详细信息
Runge Kutta Optimization(RUN)is a widely utilized metaheuristic ***,it suffers from these issues:the imbalance between exploration and exploitation and the tendency to fall into local optima when it solves real-world ...
详细信息
Runge Kutta Optimization(RUN)is a widely utilized metaheuristic ***,it suffers from these issues:the imbalance between exploration and exploitation and the tendency to fall into local optima when it solves real-world opti-mization *** address these challenges,this study aims to endow each individual in the population with a certain level of intelligence,allowing them to make autonomous decisions about their next optimization *** incorporating Reinforcement Learning(RL)and the Composite Mutation Strategy(CMS),each individual in the population goes through additional self-improvement steps after completing the original algorithmic phases,referred to as *** is,each individual in the RUN population is trained intelligently using RL to independently choose three different differentiation strategies in CMS when solving different *** validate the competitiveness of RLRUN,comprehensive empirical tests were conducted using the IEEE CEC 2017 benchmark *** comparative experiments with 13 conventional algorithms and 10 advanced algorithms were *** experimental results demonstrated that RLRUN excels in convergence accuracy and speed,surpassing even some champion ***,this study introduced a binary version of RLRUN,named bRLRUN,which was employed for the feature selection *** 24 high-dimensional datasets encompassing UCI datasets and SBCB machine learning library microarray datasets,bRLRUN occupies the top position in classification accuracy and the number of selected feature subsets compared to some *** conclusion,the proposed algorithm demonstrated that it exhibits a strong competitive advantage in high-dimensional feature selection for complex datasets.
Most of the search-based software remodularization(SBSR)approaches designed to address the software remodularization problem(SRP)areutilizing only structural information-based coupling and cohesion quality ***,in prac...
详细信息
Most of the search-based software remodularization(SBSR)approaches designed to address the software remodularization problem(SRP)areutilizing only structural information-based coupling and cohesion quality ***,in practice apart from these quality criteria,there require other aspects of coupling and cohesion quality criteria such as lexical and changed-history in designing the modules of the software ***,consideration of limited aspects of software information in the SBSR may generate a sub-optimal modularization ***,such modularization can be good from the quality metrics perspective but may not be acceptable to the *** produce a remodularization solution acceptable from both quality metrics and developers’perspectives,this paper exploited more dimensions of software information to define the quality criteria as modularization ***,these objectives are simultaneously optimized using a tailored manyobjective artificial bee colony(MaABC)to produce a remodularization *** assess the effectiveness of the proposed approach,we applied it over five software *** obtained remodularization solutions are evaluated with the software quality metrics and developers view of *** demonstrate that the proposed software remodularization is an effective approach for generating good quality modularization solutions.
Now-a-days, the generation of videos has increased dramatically due to the quick growth of multimedia and the internet. The need for effective ways to store, manage, and index the massive numbers of videos has become ...
详细信息
暂无评论