The main aim of this project is to teach the computer to recognize patterns in air quality data, such as how pollution levels change over time. We use the LSTM network to make sense of different things like pollution ...
详细信息
The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human *** widespread deployment of wireless micro sensors will make it possible to conduct accurate environmental mo...
详细信息
The Wireless Sensor Network(WSN)is a network that is constructed in regions that are inaccessible to human *** widespread deployment of wireless micro sensors will make it possible to conduct accurate environmental monitoring for a use in both civil and military *** make use of these data to monitor and keep track of the physical data of the surrounding environment in order to ensure the sustainability of the *** data have to be picked up by the sensor,and then sent to the sink node where they may be *** nodes of the WSNs are powered by batteries,therefore they eventually run out of *** energy restriction has an effect on the network life span and environmental *** objective of this study is to further improve the Engroove Leach(EL)protocol’s energy efficiency so that the network can operate for a very long time while consuming the least amount of *** lifespan of WSNs is being extended often using clustering and routing *** Meta Inspired Hawks Fragment Optimization(MIHFO)system,which is based on passive clustering,is used in this study to do *** cluster head is chosen based on the nodes’residual energy,distance to neighbors,distance to base station,node degree,and node *** on distance,residual energy,and node degree,an algorithm known as Heuristic Wing Antfly Optimization(HWAFO)selects the optimum path between the cluster head and Base Station(BS).They examine the number of nodes that are active,their energy consumption,and the number of data packets that the BS *** overall experimentation is carried out under the MATLAB *** the analysis,it has been discovered that the suggested approach yields noticeably superior outcomes in terms of throughput,packet delivery and drop ratio,and average energy consumption.
Food Infestation Detection is more important for food safety and health concerns. It is a challenging task to separate the grains into infested or non-infested. It is found that in the existing system, there is no eff...
详细信息
The naive Bayesian classifier(NBC) is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability. However, the generalization performance of NBC is limited to a large...
详细信息
The naive Bayesian classifier(NBC) is a supervised machine learning algorithm having a simple model structure and good theoretical interpretability. However, the generalization performance of NBC is limited to a large extent by the assumption of attribute independence. To address this issue, this paper proposes a novel attribute grouping-based NBC(AG-NBC), which is a variant of the classical NBC trained with different attribute groups. AG-NBC first applies a novel effective objective function to automatically identify optimal dependent attribute groups(DAGs). Condition attributes in the same DAG are strongly dependent on the class attribute, whereas attributes in different DAGs are independent of one another. Then,for each DAG, a random vector functional link network with a SoftMax layer is trained to output posterior probabilities in the form of joint probability density estimation. The NBC is trained using the grouping attributes that correspond to the original condition attributes. Extensive experiments were conducted to validate the rationality, feasibility, and effectiveness of AG-NBC. Our findings showed that the attribute groups chosen for NBC can accurately represent attribute dependencies and reduce overlaps between different posterior probability densities. In addition, the comparative results with NBC, flexible NBC(FNBC), tree augmented Bayes network(TAN), gain ratio-based attribute weighted naive Bayes(GRAWNB), averaged one-dependence estimators(AODE), weighted AODE(WAODE), independent component analysis-based NBC(ICA-NBC), hidden naive Bayesian(HNB) classifier, and correlation-based feature weighting filter for naive Bayes(CFW) show that AG-NBC obtains statistically better testing accuracies, higher area under the receiver operating characteristic curves(AUCs), and fewer probability mean square errors(PMSEs) than other Bayesian classifiers. The experimental results demonstrate that AG-NBC is a valid and efficient approach for alleviating the attribute i
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and *** address the limitations imposed by i...
详细信息
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and *** address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering *** various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time *** paper presents an approach based on state-of-the-art machine-learning *** this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data *** primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation *** evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop *** proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embe...
详细信息
State-of-the-art recommender systems are increasingly focused on optimizing implementation efficiency, such as enabling on-device recommendations under memory constraints. Current methods commonly use lightweight embeddings for users and items or employ compact embeddings to enhance reusability and reduce memory usage. However, these approaches consider only the coarse-grained aspects of embeddings, overlooking subtle semantic nuances. This limitation results in an adversarial degradation of meta-embedding performance, impeding the system's ability to capture intricate relationships between users and items, leading to suboptimal recommendations. To address this, we propose a novel approach to efficiently learn meta-embeddings with varying grained and apply fine-grained meta-embeddings to strengthen the representation of their coarse-grained counterparts. Specifically, we introduce a recommender system based on a graph neural network, where each user and item is represented as a node. These nodes are directly connected to coarse-grained virtual nodes and indirectly linked to fine-grained virtual nodes, facilitating learning of multi-grained semantics. Fine-grained semantics are captured through sparse meta-embeddings, which dynamically balance embedding uniqueness and memory constraints. To ensure their sparseness, we rely on initialization methods such as sparse principal component analysis combined with a soft thresholding activation function. Moreover, we propose a weight-bridging update strategy that aligns coarse-grained meta-embedding with several fine-grained meta-embeddings based on the underlying semantic properties of users and items. Comprehensive experiments demonstrate that our method outperforms existing baselines. The code of our proposal is available at https://***/htyjers/C2F-MetaEmbed.
This study proposes a hybrid optimization-based mobility management strategy employing Kinetic Gas Molecular Optimization (KGMO) and Ant Lion Optimization (ALO). Initially, KGMO calculates particle properties, such as...
详细信息
Image caption-generating systems aim to deliver accurate, coherent, and useful captions. This includes identifying the scene, items, relationships, and attributes of the image's objects. Due to constraints in usin...
详细信息
Effective task scheduling and resource allocation have become major problems as a result of the fast development of cloud computing as well as the rise of multi-cloud systems. To successfully handle these issues, we p...
详细信息
Background: The synthesis of reversible logic has gained prominence as a crucial research area, particularly in the context of post-CMOS computing devices, notably quantum computing. Objective: To implement the bitoni...
详细信息
暂无评论