咨询与建议

限定检索结果

文献类型

  • 102 篇 期刊文献
  • 91 篇 会议

馆藏范围

  • 193 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 73 篇 计算机科学与技术...
    • 68 篇 软件工程
    • 21 篇 电气工程
    • 19 篇 生物工程
    • 15 篇 化学工程与技术
    • 14 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 生物医学工程(可授...
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 安全科学与工程
  • 71 篇 理学
    • 47 篇 数学
    • 19 篇 生物学
    • 16 篇 统计学(可授理学、...
    • 13 篇 化学
    • 9 篇 物理学
    • 9 篇 系统科学
  • 38 篇 管理学
    • 26 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 11 篇 医学
    • 7 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 8 篇 法学
    • 7 篇 社会学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 8 篇 graph neural net...
  • 7 篇 deep neural netw...
  • 6 篇 costs
  • 5 篇 data visualizati...
  • 4 篇 scalability
  • 4 篇 deep learning
  • 4 篇 data engineering
  • 4 篇 accuracy
  • 3 篇 reinforcement le...
  • 3 篇 data centers
  • 3 篇 image segmentati...
  • 3 篇 network topology
  • 3 篇 bandwidth
  • 3 篇 graphic methods
  • 3 篇 real-time system...
  • 3 篇 analytical model...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 uncertainty
  • 3 篇 streaming media

机构

  • 62 篇 national enginee...
  • 25 篇 peking universit...
  • 24 篇 center for data ...
  • 18 篇 national enginee...
  • 17 篇 peng cheng labor...
  • 16 篇 school of mathem...
  • 14 篇 national enginee...
  • 14 篇 beijing internat...
  • 11 篇 center for data ...
  • 10 篇 department of in...
  • 9 篇 college of engin...
  • 9 篇 center for machi...
  • 8 篇 peking universit...
  • 7 篇 school of comput...
  • 7 篇 alibaba group
  • 7 篇 pku-changsha ins...
  • 6 篇 school of electr...
  • 6 篇 zte corporation
  • 6 篇 national biomedi...
  • 6 篇 peking universit...

作者

  • 28 篇 cui bin
  • 22 篇 jianxiao wang
  • 18 篇 bin cui
  • 18 篇 zhang wentao
  • 15 篇 wang jianxiao
  • 10 篇 yang zhi
  • 10 篇 tong yang
  • 9 篇 yang tong
  • 8 篇 jie zhao
  • 8 篇 bian kaigui
  • 7 篇 zhao jie
  • 7 篇 li zhang
  • 7 篇 xiaoru yuan
  • 7 篇 shao yingxia
  • 7 篇 yuan xiaoru
  • 7 篇 zifan chen
  • 7 篇 bin dong
  • 7 篇 jie song
  • 6 篇 chang kuo-chi
  • 6 篇 zhang li

语言

  • 184 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=Peking University&National Engineering Laboratory for Big Data Analysis and Applications"
193 条 记 录,以下是121-130 订阅
排序:
AONN-2: An adjoint-oriented neural network method for PDE-constrained shape optimization
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Xili Yin, Pengfei Zhang, Bo Yang, Chao School of Mathematical Sciences Peking University Beijing100871 China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing100871 China PKU-Changsha Institute for Computing and Digital Economy Hunan410006 China
Shape optimization has been playing an important role in a large variety of engineering applications. Existing shape optimization methods are generally mesh-dependent and therefore encounter challenges due to mesh def... 详细信息
来源: 评论
Discovering Physics-Informed Neural Networks Model for Solving Partial Differential Equations through Evolutionary Computation
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Bo Yang, Chao National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing100871 China School of Mathematical Sciences Peking University Beijing100871 China PKU Changsha Institute for Computing and Digital Economy Changsha410205 China
In recent years, the researches about solving partial differential equations (PDEs) based on artificial neural network have attracted considerable attention. In these researches, the neural network models are usually ... 详细信息
来源: 评论
Power Grid Critical State Search Based on Improved Particle Swarm Optimization  6th
Power Grid Critical State Search Based on Improved Particle ...
收藏 引用
6th International Conference on Advanced Intelligent Systems and Informatics, AISI 2020
作者: Luo, Jie Deng, Hui-Qiong Li, Qin-Bin Zheng, Rong-Jin Li, Pei-Qiang Chang, Kuo-Chi School of Information Science and Engineering Fujian University of Technology Fuzhou350108 China Fujian Provincial University Engineering Research Center of Smart Grid Simulation Analysis and Integrated Control Fuzhou350108 China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology Fuzhou China College of Mechanical and Electrical Engineering National Taipei University of Technology Taipei Taiwan
This article proposes a method to find the closest critical initial running state of power grid, aiming at the possible chain reaction failure caused by branch fault in power system. First of all, assuming the initial... 详细信息
来源: 评论
Finding Simplex Items in data Streams  39
Finding Simplex Items in Data Streams
收藏 引用
39th IEEE International Conference on data engineering, ICDE 2023
作者: Fan, Zhuochen Guo, Jiarui Li, Xiaodong Yang, Tong Zhao, Yikai Wu, Yuhan Cui, Bin Xu, Yanwei Uhlig, Steve Zhang, Gong Peking University School of Computer Science National Engineering Laboratory for Big Data Analysis Technology and Application Beijing China Peng Cheng Laboratory Shenzhen China Central Research Institute 2012 Labs Huawei Technologies Co. Ltd. Theory Lab Hong Kong Queen Mary University of London School of Electronic Engineering and Computer Science London United Kingdom
In this paper, we propose a new type of item in data streams, called simplex items. Simplex items have frequencies in consecutive p windows that can be approximated by a polynomial of degree at most k, where k = 0, 1,... 详细信息
来源: 评论
PrompTHis: Visualizing the Process and Influence of Prompt Editing during Text-to-Image Creation
arXiv
收藏 引用
arXiv 2024年
作者: Guo, Yuhan Shao, Hanning Liu, Can Xu, Kai Yuan, Xiaoru Key Laboratory of Machine Perception Ministry of Education School of AI Peking University China National Engineering Laboratory for Big Data Analysis and Application Peking University China University of Nottingham United Kingdom
Generative text-to-image models, which allow users to create appealing images through a text prompt, have seen a dramatic increase in popularity in recent years. However, most users have a limited understanding of how... 详细信息
来源: 评论
Accelerating Scalable Graph Neural Network Inference with Node-Adaptive Propagation
Accelerating Scalable Graph Neural Network Inference with No...
收藏 引用
International Conference on data engineering
作者: Xinyi Gao Wentao Zhang Junliang Yu Yingxia Shao Quoc Viet Hung Nguyen Bin Cui Hongzhi Yin The University of Queensland Brisbane Australia Peking University Beijing China National Engineering Laboratory for Big Data Analysis and Applications Beijing China Beijing University of Posts and Telecommunications Beijing China Griffith University Gold Coast Australia
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications. However, the sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs. Alt... 详细信息
来源: 评论
Accelerating Scalable Graph Neural Network Inference with Node-Adaptive Propagation
arXiv
收藏 引用
arXiv 2023年
作者: Gao, Xinyi Zhang, Wentao Yu, Junliang Shao, Yingxia Nguyen, Quoc Viet Hung Cui, Bin Yin, Hongzhi The University of Queensland Brisbane Australia Peking University Beijing China National Engineering Laboratory for Big Data Analysis and Applications Beijing China Beijing University of Posts and Telecommunications Beijing China Griffith University Gold Coast Australia
Graph neural networks (GNNs) have exhibited exceptional efficacy in a diverse array of applications. However, the sheer size of large-scale graphs presents a significant challenge to real-time inference with GNNs. Alt... 详细信息
来源: 评论
SHE: A Generic Framework for data Stream Mining over Sliding Windows  22
SHE: A Generic Framework for Data Stream Mining over Sliding...
收藏 引用
Proceedings of the 51st International Conference on Parallel Processing
作者: Yuhan Wu Zhuochen Fan Qilong Shi Yixin Zhang Tong Yang Cheng Chen Zheng Zhong Junnan Li Ariel Shtul Yaofeng Tu School of Computer Science and National Engineering Laboratory for Big Data Analysis Technology and Application Peking University China and PCL Research Center of Networks and Communications Peng Cheng Laboratory China School of Computer Science and National Engineering Laboratory for Big Data Analysis Technology and Application Peking University China National University of Defense Technology China Redis Labs Israel ZTE Corporation China
1data stream mining over a sliding window is a fundamental problem in many applications, such as financial data trackers, intrusion detection and QoS. To meet the demand for high throughput of high speed data streams,...
来源: 评论
K-Core Decomposition on Super Large Graphs with Limited Resources
arXiv
收藏 引用
arXiv 2021年
作者: Gao, Shicheng Xu, Jie Li, Xiaosen Fu, Fangcheng Zhang, Wentao Ouyang, Wen Tao, Yangyu Cui, Bin School of Electronic and Computer Engineering Shenzhen Graduate School Peking University China Tencent Inc. China Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications China School of CS Key Laboratory of High Confidence Software Technologies Peking University China Institute of Computational Social Science Peking University Qingdao China
K-core decomposition is a commonly used metric to analyze graph structure or study the relative importance of nodes in complex graphs. Recent years have seen rapid growth in the scale of the graph, especially in indus... 详细信息
来源: 评论
A-Map: Interactive Visual Exploration of Intercity Accessibility Dynamics Based on Railway Network data
A-Map: Interactive Visual Exploration of Intercity Accessibi...
收藏 引用
Pacific (formerly Asia-Pacific APVIS) Visualization Symposium
作者: Kaichen Nie Hanning Shao Yuchu Luo Min Tian Hao Wu Wei Zeng Xin Fu Xiaoru Yuan Key Laboratory of Machine Perception (Ministry of Education) School of AI Peking University Hong Kong University of Science and Technology Guangzhou Chang’an University National Engineering Laboratory for Big Data Analysis and Application Peking University
Railway transportation is closely linked to everyday lives while also aiding domain experts in analyzing national or regional development. However, discrepancies between travel time reduced by railways and actual dist... 详细信息
来源: 评论