咨询与建议

限定检索结果

文献类型

  • 102 篇 期刊文献
  • 91 篇 会议

馆藏范围

  • 193 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 73 篇 计算机科学与技术...
    • 68 篇 软件工程
    • 21 篇 电气工程
    • 19 篇 生物工程
    • 15 篇 化学工程与技术
    • 14 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 生物医学工程(可授...
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 安全科学与工程
  • 71 篇 理学
    • 47 篇 数学
    • 19 篇 生物学
    • 16 篇 统计学(可授理学、...
    • 13 篇 化学
    • 9 篇 物理学
    • 9 篇 系统科学
  • 38 篇 管理学
    • 26 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 11 篇 医学
    • 7 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 8 篇 法学
    • 7 篇 社会学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 8 篇 graph neural net...
  • 7 篇 deep neural netw...
  • 6 篇 costs
  • 5 篇 data visualizati...
  • 4 篇 scalability
  • 4 篇 deep learning
  • 4 篇 data engineering
  • 4 篇 accuracy
  • 3 篇 reinforcement le...
  • 3 篇 data centers
  • 3 篇 image segmentati...
  • 3 篇 network topology
  • 3 篇 bandwidth
  • 3 篇 graphic methods
  • 3 篇 real-time system...
  • 3 篇 analytical model...
  • 3 篇 feature extracti...
  • 3 篇 machine learning
  • 3 篇 uncertainty
  • 3 篇 streaming media

机构

  • 62 篇 national enginee...
  • 25 篇 peking universit...
  • 24 篇 center for data ...
  • 18 篇 national enginee...
  • 17 篇 peng cheng labor...
  • 16 篇 school of mathem...
  • 14 篇 national enginee...
  • 14 篇 beijing internat...
  • 11 篇 center for data ...
  • 10 篇 department of in...
  • 9 篇 college of engin...
  • 9 篇 center for machi...
  • 8 篇 peking universit...
  • 7 篇 school of comput...
  • 7 篇 alibaba group
  • 7 篇 pku-changsha ins...
  • 6 篇 school of electr...
  • 6 篇 zte corporation
  • 6 篇 national biomedi...
  • 6 篇 peking universit...

作者

  • 28 篇 cui bin
  • 22 篇 jianxiao wang
  • 18 篇 bin cui
  • 18 篇 zhang wentao
  • 15 篇 wang jianxiao
  • 10 篇 yang zhi
  • 10 篇 tong yang
  • 9 篇 yang tong
  • 8 篇 jie zhao
  • 8 篇 bian kaigui
  • 7 篇 zhao jie
  • 7 篇 li zhang
  • 7 篇 xiaoru yuan
  • 7 篇 shao yingxia
  • 7 篇 yuan xiaoru
  • 7 篇 zifan chen
  • 7 篇 bin dong
  • 7 篇 jie song
  • 6 篇 chang kuo-chi
  • 6 篇 zhang li

语言

  • 184 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=Peking University&National Engineering Laboratory for Big Data Analysis and Applications"
193 条 记 录,以下是181-190 订阅
排序:
Model-assisted inference for covariate-specific treatment effects with high-dimensional data
arXiv
收藏 引用
arXiv 2021年
作者: Wu, Peng Tan, Zhiqiang Hu, Wenjie Zhou, Xiao-Hua Beijing International Center for Mathematical Research Peking University Beijing100871 China Department of Statistics Rutgers University 110 Frelinghuysen Road PiscatawayNJ08854 United States Department of Probability and Statistics Peking University Beijing100871 China Department of Biostatistics Beijing International Center for Mathematical Research National Engineering Laboratory of Big Data Analysis and Applied Technology Peking University Beijing100871 China
Covariate-specific treatment effects (CSTEs) represent heterogeneous treatment effects across subpopulations defined by certain selected covariates. In this article, we consider marginal structural models where CSTEs ... 详细信息
来源: 评论
Artificial Intelligence in Smart Grids: A Comprehensive Bibliometric analysis
Artificial Intelligence in Smart Grids: A Comprehensive Bibl...
收藏 引用
IEEE Conference on Energy Internet and Energy System Integration (EI2)
作者: Wenrui Guo Jianxiao Wang Qiang Jin Yong Yang Editorial Office of Journal Energy Conversion and Economics State Grid Economic and Technological Research Institute Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Distribution Network Planning Center State Grid Economic and Technological Research Institute Beijing China Equipment Supervision Center State Grid Economic and Technological Research Institute Beijing China
The research field of artificial intelligence applications for smart grids has been a rapidly growing hotspot over the past 20 years. This paper conducts a bibliometric analysis of research trends and hotspots in this... 详细信息
来源: 评论
Finding Simplex Items in data Streams
Finding Simplex Items in Data Streams
收藏 引用
International Conference on data engineering
作者: Zhuochen Fan Jiarui Guo Xiaodong Li Tong Yang Yikai Zhao Yuhan Wu Bin Cui Yanwei Xu Steve Uhlig Gong Zhang School of Computer Science and National Engineering Laboratory for Big Data Analysis Technology and Application Peking University Beijing China Peng Cheng Laboratory Shenzhen China Theory Lab Central Research Institute 2012 Labs Huawei Technologies Co. Ltd. Hong Kong SAR China School of Electronic Engineering and Computer Science Queen Mary University of London London UK
In this paper, we propose a new type of item in data streams, called simplex items. Simplex items have frequencies in consecutive p windows that can be approximated by a polynomial of degree at most k, where k = 0, 1,...
来源: 评论
Research on Pre-view Method of Safety Level of Cascading Trip for Power Grid  6th
Research on Pre-view Method of Safety Level of Cascading Tri...
收藏 引用
6th International Conference on Advanced Machine Learning Technologies and applications, AMLTA 2021
作者: Deng, Huiqiong Li, Qinbin Zheng, Rongjin Li, Peiqiang Chang, Kuo-Chi School of Information Science and Engineering Fujian University of Technology No. 3 Xueyuan Road University Town Minhou Fuzhou Fujian350118 China Fujian Provincial University Engineering Research Center of Smart Grid Simulation Analysis and Integrated Control Fuzhou Fujian350118 China Fujian Provincial Key Laboratory of Big Data Mining and Applications Fujian University of Technology No. 3 Xueyuan Road University Town Minhou Fuzhou Fujian350118 China College of Mechanical & Electrical Engineering National Taipei University of Technology No. 1 Section 3 Zhongxiao East Road Taipei10608 Taiwan Department of Business Administration North Borneo University College Lot 47 Block-F Alamesra Permai Plaza 2 Jln Sulaman Kota Kinabalu Sabah88400 Malaysia
This article introduces a method by which the power grid's security level can be observed in advance based on the expected initial failure. Firstly, based on the general form of cascading trip, this paper gives a ... 详细信息
来源: 评论
Robust frequent directions with application in online learning
arXiv
收藏 引用
arXiv 2017年
作者: Luo, Luo Chen, Cheng Zhang, Zhihua Li, Wu-Jun Zhang, Tong Department of Computer Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai200240 China National Engineering Lab for Big Data Analysis and Applications School of Mathematical Sciences Peking University 5 Yiheyuan Road Beijing100871 China National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology and Industrialization Department of Computer Science and Technology Nanjing University 163 Xianlin Avenue Nanjing210023 China Computer Science & Mathematics Hong Kong University of Science and Technology Hong Kong
The frequent directions (FD) technique is a deterministic approach for online sketching that has many applications in machine learning. The conventional FD is a heuristic procedure that often outputs rank deficient ma... 详细信息
来源: 评论
Modeling viral evolution:A novel SIRSVIDE framework with application to SARS-CoV-2 dynamics
微生物与宿主健康(英文)
收藏 引用
微生物与宿主健康(英文) 2024年 第5期2卷 227-245页
作者: Kaichun Jin Xiaolu Tang Zhaohui Qian Zhiqiang Wu Zifeng Yang Tao Qian Chitin Hon Jian Lu State Key Laboratory of Protein and Plant Gene Research Center for BioinformaticsSchool of Life SciencesPeking UniversityBeijingChina NHC Key Laboratory of Systems Biology of Pathogens Institute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina State Key Laboratory of Respiratory Disease National Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangdongChina Respiratory Disease Al Laboratory on Epidemic and Medical Big Data Instrument Applications Department of Engineering ScienceFaculty of Innovation EngineeringMacau University of Science and TechnologyMacauChina Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases KingMed School of Laboratory MedicineGuangzhou Medical UniversityGuangdongChina Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases KingMed School of Laboratory MedicineGuangzhou Medical UniversityGuangdongChina Macau Center for Mathematical Sciences Macau University of Science and TechnologyMacauChina Respiratory Disease Al Laboratory on Epidemic and Medical Big Data Instrument Applications Department of Engineering ScienceFaculty of Innovation EngineeringMacau University of Science and TechnologyMacauChina Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases KingMed School of Laboratory MedicineGuangzhou Medical UniversityGuangdongChina Department of Engineering Science Faculty of Innovation EngineeringMacau University of Science and TechnologyMacauChina
Understanding evolutionary trends in emerging viruses,such as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),is crucial for effective public health management and ***,extensive debates have arisen concern... 详细信息
来源: 评论
Time series forecast of sales volume based on XGBoost
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1873卷
作者: Lingyu Zhang Wenjie Bian Wenyi Qu Liheng Tuo Yunhai Wang School of Computer Science and Technology Shandong University Qingdao China Didi AI Labs Didi Chuxing Beijing China Smart Transportation Center National Engineering Laboratory for Big Data Analysis and Applications Beijing China
Some problems such as the decline of new labor force, the increase of retired labor force emerge because of the complex and changeable market environment, consequently exacerbating the staffing problem in the retail i...
来源: 评论
The wisdom of crowds versus the madness of mobs: An evolutionary model of bias, polarization, and other challenges to collective intelligence
收藏 引用
Collective Intelligence 2022年 第1期1卷 26339137221104785页
作者: Andrew W Lo Ruixun Zhang MIT Laboratory for Financial Engineering Cambridge MA USA MIT Sloan School of Management Cambridge MA USA MIT Computer Science and Artificial Intelligence Laboratory Cambridge MA USA Santa Fe Institute Santa Fe NM USA School of Mathematical Sciences Peking University Beijing China Center for Statistical Science Peking University Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China
Despite its success in financial markets and other domains, collective intelligence seems to fall short in many critical contexts, including infrequent but repeated financial crises, political polarization and deadloc... 详细信息
来源: 评论
Robust frequent directions with application in online learning
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2019年 第1期20卷
作者: Luo Luo Cheng Chen Zhihua Zhang Wu-Jun Li Tong Zhang Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China National Engineering Lab for Big Data Analysis and Applications School of Mathematical Sciences Peking University Beijing China National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology and Industrialization Department of Computer Science and Technology Nanjing University Nanjing China Computer Science & Mathematics Hong Kong University of Science and Technology Hong Kong
The frequent directions (FD) technique is a deterministic approach for online sketching that has many applications in machine learning. The conventional FD is a heuristic procedure that often outputs rank deficient ma... 详细信息
来源: 评论
Redefining pandemic preparedness:Multidisciplinary insights from the CERP modelling workshop in infectious diseases,workshop report
收藏 引用
Infectious Disease Modelling 2024年 第2期9卷 501-518页
作者: Marta C.Nunes Edward Thommes Holger Fröhlich Antoine Flahault Julien Arino Marc Baguelin Matthew biggerstaff Gaston Bizel-Bizellot Rebecca Borchering Giacomo Cacciapaglia Simon Cauchemez Alex Barbier-Chebbah Carsten Claussen Christine Choirat Monica Cojocaru Catherine Commaille-Chapus Chitin Hon Jude Kong Nicolas Lambert Katharina B.Lauer Thorsten Lehr Cédric Mahe Vincent Marechal Adel Mebarki Seyed Moghadas Rene Niehus Lulla Opatowski Francesco Parino Gery Pruvost Andreas Schuppert Rodolphe Thiébaut Andrea Thomas-Bachli Cecile Viboud Jianhong Wu Pascal Crépey Laurent Coudeville Center of Excellence in Respiratory Pathogens(CERP) Hospices Civils de Lyon(HCL)and Centre International de Recherche en Infectiologie(CIRI)Équipe SantéPubliqueÉpidémiologie etÉcologieÉvolutive des Maladies Infectieuses(PHE3ID)Inserm U1111CNRS UMR5308ENS de LyonUniversitéClaude Bernard Lyon 1LyonFrance South African Medical Research Council Vaccines&Infectious Diseases Analytics Research UnitFaculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa New Products and Innovation(NPI) Sanofi Vaccines(Global)TorontoOntarioCanada Department of Mathematics and Statistics University of GuelphGuelphOntarioCanada Fraunhofer Institute for Algorithms and Scientific Computing(SCAI) Department of BioinformaticsSchloss BirlinghovenSankt AugustinGermany University of Bonn Bonn-Aachen International Center for IT(b-it)BonnGermany Institute of Global Health Faculty of MedicineUniversity of GenevaGenevaSwitzerland and Swiss School of Public HealthZürichSwitzerland Department of Mathematics University of ManitobaWinnipegManitobaCanada MRC Centre for Global Infectious Disease Analysis School of Public HealthImperial College LondonLondonUK Centre for Mathematical Modelling of Infectious Diseases Department of Infectious Disease EpidemiologyLondon School of Hygiene&Tropical MedicineLondonUK National Center for Immunization and Respiratory Diseases(NCIRD) US Centers for Disease Control and Prevention(CDC)AtlantaGAUSA Departement of Computational Biology Departement of Global HealthInstitut PasteurParisFrance Institut de Physique des Deux Infinis de Lyon(IP2I) UMR5822IN2P3/CNRSUniversitéClaude Bernard Lyon 1VilleurbanneFrance Mathematical Modelling of Infectious Diseases Unit Institut PasteurUniversitéParis CitéUMR2000 CNRSParisFrance Decision and Bayesian Computation Institut PasteurUniversitéParis CitéCNRS UMR 3571France Fraunhofer-Institute for Translational Medicine and Pharmacology HamburgGermany Institute of Global Health Faculty of MedicineUniversity of
In July 2023,the Center of Excellence in Respiratory Pathogens organized a two-day workshop on infectious diseases modelling and the lessons learnt from the Covid-19 *** report summarizes the rich discussions that occ... 详细信息
来源: 评论