咨询与建议

限定检索结果

文献类型

  • 101 篇 期刊文献
  • 84 篇 会议

馆藏范围

  • 185 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 111 篇 工学
    • 73 篇 计算机科学与技术...
    • 68 篇 软件工程
    • 21 篇 电气工程
    • 19 篇 生物工程
    • 15 篇 化学工程与技术
    • 14 篇 控制科学与工程
    • 12 篇 信息与通信工程
    • 8 篇 动力工程及工程热...
    • 8 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 4 篇 建筑学
    • 4 篇 生物医学工程(可授...
    • 3 篇 力学(可授工学、理...
    • 3 篇 仪器科学与技术
    • 3 篇 安全科学与工程
  • 71 篇 理学
    • 47 篇 数学
    • 19 篇 生物学
    • 16 篇 统计学(可授理学、...
    • 13 篇 化学
    • 9 篇 物理学
    • 9 篇 系统科学
  • 38 篇 管理学
    • 26 篇 管理科学与工程(可...
    • 14 篇 工商管理
    • 14 篇 图书情报与档案管...
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 11 篇 医学
    • 7 篇 临床医学
    • 4 篇 基础医学(可授医学...
    • 4 篇 公共卫生与预防医...
    • 4 篇 药学(可授医学、理...
  • 8 篇 法学
    • 7 篇 社会学
  • 1 篇 教育学
  • 1 篇 文学

主题

  • 8 篇 graph neural net...
  • 7 篇 deep neural netw...
  • 5 篇 data visualizati...
  • 4 篇 deep learning
  • 4 篇 data engineering
  • 4 篇 costs
  • 4 篇 accuracy
  • 3 篇 reinforcement le...
  • 3 篇 network topology
  • 3 篇 bandwidth
  • 3 篇 graphic methods
  • 3 篇 machine learning
  • 3 篇 uncertainty
  • 3 篇 streaming media
  • 3 篇 data models
  • 3 篇 power system sta...
  • 3 篇 quality of exper...
  • 2 篇 conferences
  • 2 篇 scalability
  • 2 篇 collaborative fi...

机构

  • 56 篇 national enginee...
  • 25 篇 peking universit...
  • 21 篇 center for data ...
  • 18 篇 national enginee...
  • 17 篇 peng cheng labor...
  • 16 篇 school of mathem...
  • 14 篇 national enginee...
  • 11 篇 beijing internat...
  • 11 篇 center for data ...
  • 9 篇 department of in...
  • 7 篇 school of comput...
  • 7 篇 college of engin...
  • 7 篇 alibaba group
  • 7 篇 pku-changsha ins...
  • 6 篇 school of electr...
  • 6 篇 zte corporation
  • 6 篇 center for machi...
  • 6 篇 peking universit...
  • 6 篇 the university o...
  • 6 篇 beijing universi...

作者

  • 28 篇 cui bin
  • 18 篇 bin cui
  • 18 篇 zhang wentao
  • 17 篇 jianxiao wang
  • 15 篇 wang jianxiao
  • 10 篇 yang zhi
  • 10 篇 tong yang
  • 9 篇 yang tong
  • 8 篇 bian kaigui
  • 7 篇 zhao jie
  • 7 篇 xiaoru yuan
  • 7 篇 shao yingxia
  • 7 篇 yuan xiaoru
  • 6 篇 chang kuo-chi
  • 6 篇 zhang li
  • 6 篇 chen zifan
  • 6 篇 kaigui bian
  • 5 篇 zhao yikai
  • 5 篇 yuhan wu
  • 5 篇 jie zhao

语言

  • 176 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"机构=Peking University&National Engineering Laboratory for Big Data Analysis and Applications"
185 条 记 录,以下是71-80 订阅
排序:
bbTopk: Bandwidth-Aware Sparse Allreduce with Blocked Sparsification for Efficient Distributed Training
bbTopk: Bandwidth-Aware Sparse Allreduce with Blocked Sparsi...
收藏 引用
International Conference on Distributed Computing Systems
作者: Chang Chen Min Li Chao Yang Center for Data Science Peking University School of Mathematics Sciences Peking University National Engineering Laboratory for Big Data Analysis and Applications Peking University PKU-Changsha Institute for Computing and Digital Economy
Communication overhead is one of the major bottlenecks for large-scale distributed model training. Sparse gradient has been proposed to reduce the communication volume dramatically without affecting the model accuracy...
来源: 评论
Deep Reinforcement Learning based Indoor Air Quality Sensing by Cooperative Mobile Robots
Deep Reinforcement Learning based Indoor Air Quality Sensing...
收藏 引用
IEEE Conference on Wireless Communications and Networking
作者: Zhiwen Hu Tiankuo Song Kaigui Bian Lingyang Song National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing 101 Middle School Beijing China Department of Computer Science Peking University China
Confronted with the severe indoor air pollution nowadays, we propose the usage of multiple robots to detect the indoor air quality (IAQ) cooperatively for fewer sensors and larger sensing area. To acquire the complete...
来源: 评论
A Heuristic Method for Route Programming in Puzzle-Based Energy Storage Systems
A Heuristic Method for Route Programming in Puzzle-Based Ene...
收藏 引用
IEEE Conference on Energy Internet and Energy System Integration (EI2)
作者: Yang Zou Jianxiao Wang School of Engineering Peking University Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Peking University Ordos Research Institute of Energy Ordos China
Recently, many energy storage-related enterprises have been facing difficulties brought out by the limitation of land and the increase in loan cost. As a promising approach to improving space utilization rate, puzzle-...
来源: 评论
HET: Scaling out huge embedding model training via cache-enabled distributed framework
arXiv
收藏 引用
arXiv 2021年
作者: Miao, Xupeng Zhang, Hailin Shi, Yining Nie, Xiaonan Yang, Zhi Tao, Yangyu Cui, Bin Peking University China Institute of Computational Social Science Peking University Qingdao China Tencent Inc Center for Data Science Peking University National Engineering Laboratory for Big Data Analysis and Applications China
Embedding models have been an effective learning paradigm for high-dimensional data. However, one open issue of embedding models is that their representations (latent factors) often result in large parameter space. We... 详细信息
来源: 评论
A Novel Control Algorithm for Interaction Between Surface Waves and A Permeable Floating Structure
收藏 引用
China Ocean engineering 2016年 第2期30卷 161-176页
作者: Pei-Wei TSAI A.ALSAEDI T.HAYAT Cheng-Wu CHEN College of information Science and Engineering Fujian University of TechnologyFuzhou 350118China Fujian Provincial Key Laboratory of Big Data Mining and Applications(Fujian University of Technology) Fuzhou 350118China Nonlinear Analysis and Applied Mathematics(NAAM)Research Group King Abdulaziz UniversityJeddah 21589Saudi Arabia Department of Mathematics Quaid-I-Azam UniversityIslamabad 44000Pakistan Department of Maritime Information and Technology National Kaohsiung Marine UniversityKaohsiung 80543China Faculty of Engineering King Abdulaziz UniversityJeddah 21589Saudi Arabia
An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic *** the design procedure of the controller,a par... 详细信息
来源: 评论
Efficient Diversity-Driven Ensemble for Deep Neural Networks
Efficient Diversity-Driven Ensemble for Deep Neural Networks
收藏 引用
International Conference on data engineering
作者: Wentao Zhang Jiawei Jiang Yingxia Shao Bin Cui Center for Data Science Peking University & National Engineering Laboratory for Big Data Analysis and Applications ETH Zurich Switzerland School of Computer Science Beijing University of Posts and Telecommunications
The ensemble of deep neural networks has been shown, both theoretically and empirically, to improve generalization accuracy on the unseen test set. However, the high training cost hinders its efficiency since we need ... 详细信息
来源: 评论
Activation Control of Multiple Piecewise Linear Neural Networks
Activation Control of Multiple Piecewise Linear Neural Netwo...
收藏 引用
IEEE International Conference on Automation Science and engineering (CASE)
作者: Chen Hou National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China APKU-Changsha Institute for Computing and Digital Economy Changsha China
Piecewise linear neural networks (PLNNs) are proven universal approximators for continuous functions on the compact domain. For multiple PLNNs (mPLNNs) differing from each other in suffering different approximation er... 详细信息
来源: 评论
Well-balanced fifth-order finite volume WENO schemes with constant subtraction technique for shallow water equations
arXiv
收藏 引用
arXiv 2024年
作者: Zhao, Lidan Tao, Zhanjing Zhang, Min School of Mathematics Jilin University Changchun130012 China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing100871 China Chongqing Research Institute of Big Data Peking University Chongqing401121 China
In this paper, we propose a new well-balanced fifth-order finite volume WENO method for solving one- and two-dimensional shallow water equations with bottom topography. The well-balanced property is crucial to the abi... 详细信息
来源: 评论
Unsupervised domain adaptation in semantic segmentation based on pixel alignment and self-training
arXiv
收藏 引用
arXiv 2021年
作者: Dong, Hexin Yu, Fei Zhao, Jie Dong, Bin Zhang, Li Center for Data Science Peking University Beijing China Center for Data Science in Health and Medicine Peking University Beijing China National Engineering Laboratory for Big Data Analysis and Applications Peking University Beijing China Peking University Beijing China
This paper proposes an unsupervised cross-modality domain adaptation approach based on pixel alignment and self-training. Pixel alignment transfers ceT1 scans to hrT2 modality, helping to reduce domain shift in the tr... 详细信息
来源: 评论
INFORMATION GAIN PROPAGATION: A NEW WAY TO GRAPH ACTIVE LEARNING WITH SOFT LABELS
arXiv
收藏 引用
arXiv 2022年
作者: Zhang, Wentao Wang, Yexin You, Zhenbang Cao, Meng Huang, Ping Shan, Jiulong Yang, Zhi Cui, Bin School of CS Peking University China Apple United States National Engineering Laboratory for Big Data Analysis and Applications Institute of Computational Social Science Peking University Qingdao China
Graph Neural Networks (GNNs) have achieved great success in various tasks, but their performance highly relies on a large number of labeled nodes, which typically requires considerable human effort. GNN-based Active L... 详细信息
来源: 评论