咨询与建议

限定检索结果

文献类型

  • 79 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 105 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 70 篇 医学
    • 69 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 26 篇 工学
    • 14 篇 生物医学工程(可授...
    • 12 篇 光学工程
    • 11 篇 计算机科学与技术...
    • 9 篇 软件工程
    • 7 篇 电气工程
    • 7 篇 电子科学与技术(可...
    • 6 篇 生物工程
    • 5 篇 机械工程
    • 5 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 网络空间安全
  • 14 篇 理学
    • 8 篇 生物学
    • 7 篇 数学
    • 7 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地球物理学
  • 5 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 12 篇 magnetic resonan...
  • 9 篇 image segmentati...
  • 6 篇 hippocampus
  • 5 篇 diffusion tensor...
  • 5 篇 image analysis
  • 5 篇 shape
  • 4 篇 laboratories
  • 4 篇 tensile stress
  • 4 篇 skeleton
  • 4 篇 accuracy
  • 3 篇 deformable model...
  • 3 篇 brain modeling
  • 3 篇 anatomical struc...
  • 3 篇 correlation
  • 3 篇 biomedical imagi...
  • 3 篇 testing
  • 3 篇 image registrati...
  • 3 篇 solid modeling
  • 3 篇 joints
  • 3 篇 training

机构

  • 63 篇 penn image compu...
  • 46 篇 university of pe...
  • 20 篇 perelman school ...
  • 20 篇 penn memory cent...
  • 12 篇 penn alzheimer’s...
  • 11 篇 penn ftd center ...
  • 11 篇 penn image compu...
  • 10 篇 lund university ...
  • 10 篇 center for neuro...
  • 8 篇 university of ca...
  • 8 篇 penn ftd center ...
  • 6 篇 department of di...
  • 6 篇 penn ftd center ...
  • 5 篇 center for neuro...
  • 5 篇 inserm umr-s u12...
  • 4 篇 university of to...
  • 4 篇 center for biome...
  • 4 篇 department of ne...
  • 4 篇 clinical memory ...
  • 4 篇 penn alzheimer’s...

作者

  • 47 篇 david a. wolk
  • 46 篇 paul a. yushkevi...
  • 45 篇 sandhitsu r. das
  • 41 篇 long xie
  • 33 篇 laura wisse
  • 22 篇 robin de flores
  • 21 篇 murray grossman
  • 20 篇 ranjit ittyerah
  • 16 篇 james c. gee
  • 13 篇 david j. irwin
  • 9 篇 ilya m. nasralla...
  • 9 篇 john a. detre
  • 9 篇 gee james c.
  • 9 篇 corey t mcmillan
  • 8 篇 john q. trojanow...
  • 8 篇 ricardo insausti
  • 8 篇 theresa schuck
  • 7 篇 karthik prabhaka...
  • 7 篇 gabor mizsei
  • 7 篇 eddie b. lee

语言

  • 104 篇 英文
  • 1 篇 其他
检索条件"机构=Penn Image Computing and Science Laboratory"
105 条 记 录,以下是1-10 订阅
排序:
Tensor-Based Morphometry of Fibrous Structures with Application to Human Brain White Matter
Tensor-Based Morphometry of Fibrous Structures with Applicat...
收藏 引用
12th International Conference on Medical image computing and Computer-Assisted Intervention (MICCAI2009)
作者: Zhang, Hui Yushkevich, Paul A. Rueckert, Daniel Gee, James C. Penn Image Computing and Science Laboratory (PICSL) Department of Radiology University of Pennsylvania United States Department of Computing Imperial College London London United Kingdom
Tensor-based morphometry (TBM) is a powerful approach for examining shape changes in anatomy both across populations and in time. Our work extends the standard TBM for quantifying local volumetric changes to establish... 详细信息
来源: 评论
White matter hyperintensities are more highly associated with preclinical Alzheimer's disease than imaging and cognitive markers of neurodegeneration
收藏 引用
Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring 2016年 4卷 18-27页
作者: Kandel, Benjamin M. Avants, Brian B. Gee, James C. McMillan, Corey T. Erus, Guray Doshi, Jimit Davatzikos, Christos Wolk, David A. Penn Image Computing and Science Laboratory and Department of Bioengineering University of Pennsylvania Philadelphia PA United States Penn Image Computing and Science Laboratory and Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA United States Department of Neurology Perelman School of Medicine University of Pennsylvania Philadelphia PA United States Center for Biomedical Image Computing and Analytics University of Pennsylvania Philadelphia PA United States
Introduction: Cognitive tests and nonamyloid imaging biomarkers do not consistently identify preclinical AD. The objective of this study was to evaluate whether white matter hyperintensity (WMH) volume, a cerebrovascu... 详细信息
来源: 评论
Deep Learning in Medical image Registration: Magic or Mirage?  38
Deep Learning in Medical Image Registration: Magic or Mirage...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Jena, Rohit Sethi, Deeksha Chaudhari, Pratik Gee, James C. Computer and Information Science United States Electrical and Systems Engineering United States Radiology United States Penn Image Computing and Science Laboratory United States
Classical optimization and learning-based methods are the two reigning paradigms in deformable image registration. While optimization-based methods boast generalizability across modalities and robust performance, lear...
来源: 评论
Dependency prior for multi-atlas label fusion
Dependency prior for multi-atlas label fusion
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Hongzhi Wang Paul A Yushkevich Penn Image Computing and Science Laboratory University of Pennsylvania USA
Multi-atlas label fusion has been widely applied in medical image analysis. To reduce the bias in label fusion, we proposed a joint label fusion technique to reduce correlated errors produced by different atlases via ... 详细信息
来源: 评论
Multi-start Method with Prior Learning for image Registration
Multi-start Method with Prior Learning for Image Registratio...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Gang Song Brian B. Avants James C. Gee Penn Image Computing and Science Laboratory University of Pennsylvania USA
We propose an efficient image registration strategy that is based on learned prior distributions of transformation parameters. These priors are used to constrain a finite- time multi-start optimization method. Motivat... 详细信息
来源: 评论
Spatial bias in multi-atlas based segmentation
Spatial bias in multi-atlas based segmentation
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Hongzhi Wang Paul A. Yushkevich Penn Image Computing and Science Laboratory Department of Radiology University of Pennsylvania USA
Multi-atlas segmentation has been widely applied in medical image analysis. With deformable registration, this technique realizes label transfer from pre-labeled atlases to unknown images. When deformable registration... 详细信息
来源: 评论
Estimation of image Bias Field with Sparsity Constraints
Estimation of Image Bias Field with Sparsity Constraints
收藏 引用
IEEE Conference on Computer Vision and Pattern Recognition
作者: Yuanjie Zheng James C. Gee Penn Image Computing and Science Laboratory (PICSL) University of Pennsylvania School of Medicine
We propose a new scheme to estimate image bias field through introducing two sparsity constraints. One is that the bias-free image has concise representation with image gradients or coefficients of other image transfo... 详细信息
来源: 评论
Nonparametric Markov priors for tissue segmentation
Nonparametric Markov priors for tissue segmentation
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Zhuang Song Suyash P. Awate James C. Gee Penn Image Computing and Science Laboratory University of Pennsylvania Philadelphia PA USA
This paper presents a novel method to construct a probabilistic tissue prior, for Bayesian tissue segmentation, which is based on nonparametric Markov statistics of tissue intensities learned from training data. The p... 详细信息
来源: 评论
Adaptive graph cuts with tissue priors for brain MRI segmentation
Adaptive graph cuts with tissue priors for brain MRI segment...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Zhuang Song N. Tustison B. Avants J. Gee Penn Image Computing and Science Laboratory University of Pennsylvania Philadelphia PA USA
We describe a novel framework for automatic brain MRI tissue segmentation. To overcome inherent difficulties associated with this particular segmentation problem, we use a graph cut/atlas-based registration methodolog... 详细信息
来源: 评论
Hippocampus segmentation using a stable maximum likelihood classifier ensemble algorithm
Hippocampus segmentation using a stable maximum likelihood c...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Hongzhi Wang Jung Wook Suh Sandhitsu Das Murat Altinay John Pluta Paul Yushkevich Penn Image Computing and Science Laboratory Departments of Radiology University of Pennsylvania USA
We develop a new algorithm to segment the hippocampus from MR images. Our method uses a new classifier ensemble algorithm to correct segmentation errors produced by a multi-atlas based segmentation method. Our classif... 详细信息
来源: 评论