咨询与建议

限定检索结果

文献类型

  • 79 篇 期刊文献
  • 26 篇 会议

馆藏范围

  • 105 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 70 篇 医学
    • 69 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 26 篇 工学
    • 14 篇 生物医学工程(可授...
    • 12 篇 光学工程
    • 11 篇 计算机科学与技术...
    • 9 篇 软件工程
    • 7 篇 电气工程
    • 7 篇 电子科学与技术(可...
    • 6 篇 生物工程
    • 5 篇 机械工程
    • 5 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 网络空间安全
  • 14 篇 理学
    • 8 篇 生物学
    • 7 篇 数学
    • 7 篇 物理学
    • 3 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地球物理学
  • 5 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 12 篇 magnetic resonan...
  • 9 篇 image segmentati...
  • 6 篇 hippocampus
  • 5 篇 diffusion tensor...
  • 5 篇 image analysis
  • 5 篇 shape
  • 4 篇 laboratories
  • 4 篇 tensile stress
  • 4 篇 skeleton
  • 4 篇 accuracy
  • 3 篇 deformable model...
  • 3 篇 brain modeling
  • 3 篇 anatomical struc...
  • 3 篇 correlation
  • 3 篇 biomedical imagi...
  • 3 篇 testing
  • 3 篇 image registrati...
  • 3 篇 solid modeling
  • 3 篇 joints
  • 3 篇 training

机构

  • 63 篇 penn image compu...
  • 46 篇 university of pe...
  • 20 篇 perelman school ...
  • 20 篇 penn memory cent...
  • 12 篇 penn alzheimer’s...
  • 11 篇 penn ftd center ...
  • 11 篇 penn image compu...
  • 10 篇 lund university ...
  • 10 篇 center for neuro...
  • 8 篇 university of ca...
  • 8 篇 penn ftd center ...
  • 6 篇 department of di...
  • 6 篇 penn ftd center ...
  • 5 篇 center for neuro...
  • 5 篇 inserm umr-s u12...
  • 4 篇 university of to...
  • 4 篇 center for biome...
  • 4 篇 department of ne...
  • 4 篇 clinical memory ...
  • 4 篇 penn alzheimer’s...

作者

  • 47 篇 david a. wolk
  • 46 篇 paul a. yushkevi...
  • 45 篇 sandhitsu r. das
  • 41 篇 long xie
  • 33 篇 laura wisse
  • 22 篇 robin de flores
  • 21 篇 murray grossman
  • 20 篇 ranjit ittyerah
  • 16 篇 james c. gee
  • 13 篇 david j. irwin
  • 9 篇 ilya m. nasralla...
  • 9 篇 john a. detre
  • 9 篇 gee james c.
  • 9 篇 corey t mcmillan
  • 8 篇 john q. trojanow...
  • 8 篇 ricardo insausti
  • 8 篇 theresa schuck
  • 7 篇 karthik prabhaka...
  • 7 篇 gabor mizsei
  • 7 篇 eddie b. lee

语言

  • 104 篇 英文
  • 1 篇 其他
检索条件"机构=Penn Image Computing and Science Laboratory"
105 条 记 录,以下是81-90 订阅
排序:
P4-591: THE DEVELOPMENT OF A HARMONIZED SEGMENTATION PROTOCOL FOR HIPPOCAMPAL SUBFIELDS: AN UPDATE
收藏 引用
Alzheimer's & Dementia 2019年 第7S_PART_30期15卷
作者: Laura Wisse David Berron Rosanna Olsen Ana M. Daugherty Katrin Amunts Jean Augustinack Arnold Bakker Andrew Bender Marina Boccardi Martina Bocchetta Mallar Chakravarty Gaelle Chetelat Robin De Flores Jordan DeKraker Song-Lin Ding Ricardo Insausti Olga Kedo Susanne G. Mueller Noa Ofen Daniela Palombo Naftali Raz Craig E. Stark Lei Wang Paul A. Yushkevich Qijing Yu Valerie A. Carr Renaud La Joie Penn Image Computing and Science Laboratory (PICSL) University of Pennsylvania Philadelphia PA USA University of Pennsylvania Philadelphia PA USA Clinical Memory Research Unit Lund University Lund Sweden University of Toronto Toronto ON Canada Beckman Institute for Advanced Science and Technology Champaign IL USA Institute of Neuroscience and Medicine (INM-1) Jülich Germany Massachusetts General Hospital Charlestown MA USA Johns Hopkins School of Medicine Baltimore MD USA Michigan State University East Lansing MI USA IRCCS S Giovanni di Dio Fatebenefratelli Brescia Italy Dementia Research Centre Queen Square Institute of Neurology University College London London United Kingdom McGill University Montreal QC Canada Inserm UMR-S U1237 Université de Caen-Normandie Caen France The University of Western Ontario London ON Canada Allen Brain Institute Seattle WA USA University of Castilla-La Mancha Albacete Spain Forschungszentrum Jülich Julich Germany Center for Imaging of Neurodegenerative Diseases San Francisco CA USA Wayne State University Detroit MI USA Boston University School of Medicine Boston MA USA University of California Irvine Irvine CA USA Northwestern University Chicago IL USA San Jose State University San Jose CA USA University of California San Francisco San Francisco CA USA
来源: 评论
ALZHEIMER’S DISEASE AND THE HIPPOCAMPUS: NOVEL INSIGHTS FROM AN EX VIVO COMPUTATIONAL ATLAS COMBINING MRI AND HISTOLOGY
收藏 引用
Alzheimer's & Dementia 2017年 第7期13卷 P1534-P1535页
作者: Laura E.M. Wisse Daniel Adler Ranjit Ittyerah John B. Pluta Song-Lin Ding Long Xie Jiancong Wang Salmon Kadivar John L. Robinson Theresa Schuck John Q. Trojanowski Murray Grossman John A. Detre Mark A. Elliott Jon B. Toledo Weixia Liu Stephen Pickup Sandhitsu R. Das David A. Wolk Paul A. Yushkevich Penn Image Computing and Science Laboratory (PICSL) University of Pennsylvania Philadelphia PA USA University of Pennsylvania Philadelphia PA USA Allen Brain Institute Seattle WA USA Center for Neurodegenerative Disease Research University of Pennsylvania Philadelphia PA USA Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Penn FTD Center University of Pennsylvania Philadelphia PA USA Institute on Aging / University of Pennsylvania Philadelphia PA USA Houston Methodist Hospital Houston TX USA Penn Memory Center University of Pennsylvania Philadelphia PA USA
来源: 评论
Dependency prior for multi-atlas label fusion
Dependency prior for multi-atlas label fusion
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Hongzhi Wang Paul A Yushkevich Penn Image Computing and Science Laboratory University of Pennsylvania USA
Multi-atlas label fusion has been widely applied in medical image analysis. To reduce the bias in label fusion, we proposed a joint label fusion technique to reduce correlated errors produced by different atlases via ... 详细信息
来源: 评论
Spatial bias in multi-atlas based segmentation
Spatial bias in multi-atlas based segmentation
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Hongzhi Wang Paul A. Yushkevich Penn Image Computing and Science Laboratory Department of Radiology University of Pennsylvania USA
Multi-atlas segmentation has been widely applied in medical image analysis. With deformable registration, this technique realizes label transfer from pre-labeled atlases to unknown images. When deformable registration... 详细信息
来源: 评论
Reconstruction of the human hippocampus in 3D from histology and high-resolution ex-vivo MRI
Reconstruction of the human hippocampus in 3D from histology...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Daniel H. Adler Alex Yang Liu John Pluta Salmon Kadivar Sylvia Orozco Hongzhi Wang James C. Gee Brian B. Avants Paul A. Yushkevich Penn Image Computing and Science Laboratory Department of Radiology University of Pennsylvania Philadelphia PA USA
In this paper, we present methods for the reconstruction of 3D histological volumes of the human hippocampal formation from histology slices. Inter-slice alignment is guided by a graph-theoretic approach that minimize... 详细信息
来源: 评论
"Nonparametric Local Smoothing" is not image registration
收藏 引用
BMC Research Notes 2012年 第1期5卷 1-5页
作者: Rohlfing, Torsten Avants, Brian Neuroscience Program SRI International Menlo Park CA 94025 333 Ravenswood Avenue United States Penn Image Computing and Science Laboratory (PICSL) Department of Radiology University of Pennsylvania School of Medicine Philadelphia PA 19104 United States
Background: image registration is one of the most important and universally useful computational tasks in biomedical image analysis. A recent article by Xing & Qiu (IEEE Transactions on Pattern Analysis and Machin... 详细信息
来源: 评论
Hippocampus segmentation using a stable maximum likelihood classifier ensemble algorithm
Hippocampus segmentation using a stable maximum likelihood c...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Hongzhi Wang Jung Wook Suh Sandhitsu Das Murat Altinay John Pluta Paul Yushkevich Penn Image Computing and Science Laboratory Departments of Radiology University of Pennsylvania USA
We develop a new algorithm to segment the hippocampus from MR images. Our method uses a new classifier ensemble algorithm to correct segmentation errors produced by a multi-atlas based segmentation method. Our classif... 详细信息
来源: 评论
Agreement between the white matter connectivity based on the tensor-based morphometry and the volumetric white matter parcellations based on diffusion tensor imaging
Agreement between the white matter connectivity based on the...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Seung-Goo Kim Brian B. Avants Hyekyoung Lee James C. Gee Moo K. Chung Richard J Davidson Jamie L. Hanson Seth D. Pollak Department of Brain and Cognitive Sciences Seoul National University South Korea Department of Brain and Cognitive Sciences Department of Nuclear Medicine Institute of Radiation Medicine Medical Research Center Seoul National University South Korea Department of Biostatistics and Medical Informatics Waisman Laboratory for Brain Imaging and Behavior University of Wisconsin Madison WI USA Waisman Laboratory for Brain Imaging and Behavior Department of Psychology University of Wisconsin Madison WI USA Penn Image Computing and Science Laboratory Department of Radiology University of Pennsylvania Philadelphia PA USA Department of Psychology University of Wisconsin Madison WI USA Institute of Radiation Medicine Medical Research Center Seoul National University South Korea
We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed me... 详细信息
来源: 评论
Comparison of volumetric registration algorithms for tensor-based morphometry
Comparison of volumetric registration algorithms for tensor-...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Julio Villalon Anand A. Joshi Natasha Lepore Caroline Brun Arthur W. Toga Paul M. Thompson Laboratory of Neuro Imaging School of Medicine University of California Los Angeles Los Angeles CA USA Penn Image Computing and Science Laboratory University of Pennsylvania Philadelphia PA USA Department of Radiology Childrens Hospital Los Angeles University of Southern California Los Angeles CA USA
Nonlinear registration of brain MRI scans is often used to quantify morphological differences associated with disease or genetic factors. Recently, surface-guided fully 3D volumetric registrations have been developed ... 详细信息
来源: 评论
Structural connectivity via the tensor-based morphometry
Structural connectivity via the tensor-based morphometry
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Seung-Goo Kim Moo K. Chung Jamie L. Hanson Brian B. Avants James C. Gee Richard J. Davidson Seth D. Pollak Department of Brain and Cognitive Sciences Seoul National University South Korea Waisman Laboratory for Brain Imaging and Behavior University of Wisconsin Madison WI USA University of Wisconsin System Madison WI US Penn Image Computing and Science Laboratory Department of Radiology University of Pennsylvania Philadelphia PA USA
The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter conn... 详细信息
来源: 评论