咨询与建议

限定检索结果

文献类型

  • 2,908 篇 期刊文献
  • 294 篇 会议
  • 9 册 图书

馆藏范围

  • 3,211 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 2,686 篇 理学
    • 1,815 篇 物理学
    • 964 篇 数学
    • 356 篇 化学
    • 329 篇 统计学(可授理学、...
    • 226 篇 地球物理学
    • 181 篇 生物学
    • 116 篇 系统科学
    • 90 篇 天文学
  • 1,734 篇 工学
    • 414 篇 计算机科学与技术...
    • 385 篇 电子科学与技术(可...
    • 318 篇 电气工程
    • 317 篇 材料科学与工程(可...
    • 298 篇 力学(可授工学、理...
    • 291 篇 软件工程
    • 284 篇 光学工程
    • 241 篇 化学工程与技术
    • 207 篇 动力工程及工程热...
    • 136 篇 信息与通信工程
    • 124 篇 控制科学与工程
    • 114 篇 生物工程
    • 107 篇 生物医学工程(可授...
    • 96 篇 仪器科学与技术
    • 90 篇 核科学与技术
    • 83 篇 机械工程
    • 68 篇 冶金工程
    • 57 篇 土木工程
  • 127 篇 管理学
    • 73 篇 管理科学与工程(可...
    • 48 篇 图书情报与档案管...
  • 55 篇 医学
    • 45 篇 临床医学
  • 23 篇 农学
  • 18 篇 经济学
  • 16 篇 法学
  • 4 篇 教育学
  • 4 篇 艺术学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 文学

主题

  • 53 篇 molecular dynami...
  • 42 篇 density function...
  • 34 篇 electronic struc...
  • 29 篇 first-principles...
  • 26 篇 gravitational wa...
  • 25 篇 stochastic syste...
  • 24 篇 galaxies
  • 22 篇 cosmology
  • 22 篇 relativistic hea...
  • 21 篇 atoms
  • 21 篇 machine learning
  • 21 篇 quantum theory
  • 18 篇 electronic excit...
  • 18 篇 electrons
  • 18 篇 monte carlo meth...
  • 17 篇 ground state
  • 17 篇 ions
  • 16 篇 cosmic microwave...
  • 16 篇 dynamics
  • 15 篇 hadron-hadron in...

机构

  • 440 篇 institute of app...
  • 108 篇 program in appli...
  • 61 篇 department of ch...
  • 59 篇 program in appli...
  • 54 篇 laboratory of co...
  • 51 篇 department of ch...
  • 45 篇 university of sc...
  • 43 篇 china institute ...
  • 42 篇 center for appli...
  • 41 篇 faculty of elect...
  • 41 篇 università degli...
  • 41 篇 institute of app...
  • 40 篇 physics departme...
  • 39 篇 indian institute...
  • 39 篇 università di br...
  • 39 篇 department of ph...
  • 38 篇 subatech imt atl...
  • 38 篇 université clerm...
  • 38 篇 laboratoire de p...
  • 38 篇 institute of spa...

作者

  • 66 篇 salvatore torqua...
  • 60 篇 c. kim
  • 48 篇 weinan e.
  • 45 篇 torquato salvato...
  • 44 篇 zhang linfeng
  • 37 篇 k. shigaki
  • 37 篇 r. vértesi
  • 35 篇 d. röhrich
  • 35 篇 k. oyama
  • 35 篇 o. karavichev
  • 35 篇 d. peresunko
  • 35 篇 r. xu
  • 35 篇 m. s. islam
  • 35 篇 p. kurashvili
  • 35 篇 s. grigoryan
  • 35 篇 r. bailhache
  • 35 篇 t. b. skaali
  • 35 篇 i. pshenichnov
  • 35 篇 z. vilakazi
  • 35 篇 m. b. blidaru

语言

  • 3,037 篇 英文
  • 120 篇 其他
  • 47 篇 中文
  • 4 篇 俄文
  • 2 篇 法文
  • 1 篇 德文
检索条件"机构=Physics Department and Program in Applied and Computational Mathematics"
3211 条 记 录,以下是761-770 订阅
排序:
Entropy-Stable Gauss Collocation Methods for Ideal Magneto-Hydrodynamics
arXiv
收藏 引用
arXiv 2022年
作者: Rueda-Ramírez, Andrés M. Hindenlang, Florian J. Chan, Jesse Gassner, Gregor J. Department of Mathematics and Computer Science University of Cologne Weyertal 86-90 Cologne50931 Germany Max Planck Institute for Plasma Physics Boltzmannstraße 2 Garching85748 Germany Department of Computational and Applied Mathematics Rice University 6100 Main St HoustonTX77005 United States Center for Data and Simulation Science University of Cologne Cologne50931 Germany
In this paper, we present an entropy-stable Gauss collocation discontinuous Galerkin (DG) method on 3D curvilinear meshes for the GLM-MHD equations: the single-fluid magneto-hydrodynamics (MHD) equations with a genera... 详细信息
来源: 评论
Liquid-liquid transition in water from first principles
arXiv
收藏 引用
arXiv 2022年
作者: Gartner, Thomas E. Piaggi, Pablo M. Car, Roberto Panagiotopoulos, Athanassios Z. Debenedetti, Pablo G. Department of Chemistry Princeton University PrincetonNJ08544 United States Department of Physics Princeton University PrincetonNJ08544 United States Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States Department of Chemical and Biological Engineering Princeton University PrincetonNJ08544 United States
A longstanding question in water research is the possibility that supercooled liquid water can undergo a liquid-liquid phase transition (LLT) into high- and low-density liquids. We used several complementary molecular... 详细信息
来源: 评论
Learning interactions between Rydberg atoms
arXiv
收藏 引用
arXiv 2024年
作者: Simard, Olivier Dawid, Anna Tindall, Joseph Ferrero, Michel Sengupta, Anirvan M. Georges, Antoine Collège de France PSL University 11 place Marcelin Berthelot Paris75005 France CPHT CNRS École Polytechnique IP Paris PalaiseauF-91128 France Center for Computational Quantum Physics Flatiron Institute 162 Fifth Avenue New YorkNY10010 United States 〈aQaL〉 Applied Quantum Algorithms – Leiden Institute of Advanced Computer Science Lorentz Insitute for Theoretical Physics Universiteit Leiden Netherlands Center for Computational Mathematics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Department of Physics and Astronomy Rutgers University PiscatawayNJ08854 United States DQMP Université de Genève 24 quai Ernest Ansermet GenèveCH-1211 Switzerland
Quantum simulators have the potential to solve quantum many-body problems that are beyond the reach of classical computers, especially when they feature long-range entanglement. To fulfill their prospects, quantum sim... 详细信息
来源: 评论
Analyzing the impact of time-correlated noise on zero-noise extrapolation
arXiv
收藏 引用
arXiv 2022年
作者: Schultz, Kevin LaRose, Ryan Mari, Andrea Quiroz, Gregory Shammah, Nathan Clader, B. David Zeng, William J. Johns Hopkins University Applied Physics Laboratory LaurelMD20723 United States Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI48823 United States Unitary Fund Goldman Sachs & Co New YorkNY United States
Zero-noise extrapolation is a quantum error mitigation technique that has typically been studied under the ideal approximation that the noise acting on a quantum device is not time-correlated. In this work, we investi... 详细信息
来源: 评论
DPA-2:a large atomic model as a multitask learner
收藏 引用
npj computational Materials 2024年 第1期10卷 185-199页
作者: Duo Zhang Xinzijian Liu Xiangyu Zhang Chengqian Zhang Chun Cai Hangrui Bi Yiming Du Xuejian Qin Anyang Peng Jiameng Huang Bowen Li Yifan Shan Jinzhe Zeng Yuzhi Zhang Siyuan Liu Yifan Li Junhan Chang Xinyan Wang Shuo Zhou Jianchuan Liu Xiaoshan Luo Zhenyu Wang Wanrun Jiang Jing Wu Yudi Yang Jiyuan Yang Manyi Yang Fu-Qiang Gong Linshuang Zhang Mengchao Shi Fu-Zhi Dai Darrin M.York Shi Liu Tong Zhu Zhicheng Zhong Jian Lv Jun Cheng Weile Jia Mohan Chen Guolin Ke Weinan E Linfeng Zhang Han Wang AI for Science Institute BeijingP.R.China DP Technology BeijingP.R.China Academy for Advanced Interdisciplinary Studies Peking UniversityBeijingP.R.China State Key Lab of Processors Institute of Computing TechnologyChinese Academy of SciencesBeijingP.R.China University of Chinese Academy of Sciences BeijingP.R.China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingP.R.China Ningbo Institute of Materials Technology and Engineering Chinese Academy of SciencesNingboP.R.China CAS Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology Chinese Academy of SciencesNingboP.R.China School of Electronics Engineering and Computer Science Peking UniversityBeijingP.R.China Shanghai Engineering Research Center of Molecular Therapeutics&New Drug Development School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiP.R.China Laboratory for Biomolecular Simulation Research Institute for Quantitative Biomedicine and Department of Chemistry and Chemical BiologyRutgers UniversityPiscatawayNJUSA Department of Chemistry Princeton UniversityPrincetonNJUSA College of Chemistry and Molecular Engineering Peking UniversityBeijingP.R.China Yuanpei College Peking UniversityBeijingP.R.China School of Electrical Engineering and Electronic Information Xihua UniversityChengduP.R.China State Key Laboratory of Superhard Materials College of PhysicsJilin UniversityChangchunP.R.China Key Laboratory of Material Simulation Methods&Software of Ministry of Education College of PhysicsJilin UniversityChangchunP.R.China International Center of Future Science Jilin UniversityChangchunP.R.China Key Laboratory for Quantum Materialsof Zhejiang Province Department of PhysicsSchool of ScienceWestlake UniversityHangzhouP.R.China Atomistic Simulations Italian Institute of TechnologyGenovaItaly State Key Laboratory of Physical Chemistry of Solid Surface iChEMCollege of Chemistry and Chemical EngineeringXiame
The rapid advancements in artificial intelligence(AI)are catalyzing transformative changes in atomic modeling,simulation,and ***-driven potential energy models havedemonstrated the capability to conduct large-scale,lo... 详细信息
来源: 评论
Periodicity Scoring of Time Series Encodes Dynamical Behavior of the Tumor Suppressor p53 ⁎ ⁎
收藏 引用
IFAC-PapersOnLine 2021年 第9期54卷 488-495页
作者: Caroline Moosmüller Christopher J. Tralie Mahdi Kooshkbaghi Zehor Belkhatir Maryam Pouryahya José Reyes Joseph O. Deasy Allen R. Tannenbaum Ioannis G. Kevrekidis C. Moosmüller and C. Tralie contributed equally to this work Department of Mathematics University of California San Diego La Jolla CA 92093 USA Department of Medical Physics Memorial Sloan-Kettering Cancer Center NY USA Department of Chemical and Biomolecular Engineering Johns Hopkins University Baltimore MD 21218 USA Department of Mathematics and Computer Science Ursinus College Collegeville PA USA Program in Applied and Computational Mathematics Princeton University NJ USA School of Engineering and Sustainable Development De Montfort University Leicester UK Cancer Biology and Genetics Program and Computational and Systems Biology Program Memorial Sloan-Kettering Cancer Center New York NY 10065 USA and Department of Systems Biology Harvard Medical School Boston MA 02115 USA Departments of Computer Science and Applied Mathematics & Statistics Stony Brook University NY USA
In this paper we analyze the dynamical behavior of the tumor suppressor protein p53, an essential player in the cellular stress response, which prevents a cell from dividing if severe DNA damage is present. When this ... 详细信息
来源: 评论
RELATIVISTIC BINARY PRECESSION: IMPACT ON ECCENTRIC BINARY ACCRETION AND MULTI-MESSENGER ASTRONOMY
arXiv
收藏 引用
arXiv 2024年
作者: DeLaurentiis, Stanislav Haiman, Zoltán Westernacher-Schneider, John Ryan Krauth, Luke Major Davelaar, Jordy Zrake, Jonathan MacFadyen, Andrew Department of Applied Mathematics and Theoretical Physics University of Cambridge Wilberforce Road CambridgeCB3 0WA United Kingdom Department of Astronomy Columbia University 550 W. 120th Street New YorkNY10027 United States Department of Physics Columbia University 550 W. 120th Street New YorkNY10027 United States Leiden Observatory Leiden University P.O. Box 9513 Leiden2300 RA Netherlands Center for Computational Astrophysics Flatiron Institute 162 Fifth Avenue New YorkNY10010 United States Department of Physics and Astronomy Clemson University ClemsonSC29634 United States Center for Cosmology and Particle Physics Physics Department New York University New YorkNY10003 United States
Recent hydrodynamical simulations have shown that circumbinary gas disks drive the orbits of binary black holes to become eccentric, even when general relativistic corrections to the orbit are significant. Here, we st... 详细信息
来源: 评论
The quenching-activation behavior of the gradient descent dynamics for two-layer neural network models
arXiv
收藏 引用
arXiv 2020年
作者: Ma, Chao Wu, Lei Weinan, E. Department of Mathematics Princeton University Program in Applied and Computational Mathematics Princeton University Institute of Big Data Research
A numerical and phenomenological study of the gradient descent (GD) algorithm for training two-layer neural network models is carried out for different parameter regimes when the target function can be accurately appr... 详细信息
来源: 评论
Bandwidth Enables Generalization in Quantum Kernel Models
arXiv
收藏 引用
arXiv 2022年
作者: Canatar, Abdulkadir Peters, Evan Pehlevan, Cengiz Wild, Stefan M. Shaydulin, Ruslan Center for Computational Neuroscience Flatiron Institute New YorkNY10010 United States Department of Physics University of Waterloo WaterlooONN2L 3G1 Canada School of Engineering and Applied Sciences Harvard University CambridgeMA0213 United States Applied Mathematics & Computational Research Division Lawrence Berkeley National Laboratory BerkeleyCA94720 United States Global Technology Applied Research JPMorgan Chase New YorkNY10017 United States
Quantum computers are known to provide speedups over classical state-of-the-art machine learning methods in some specialized settings. For example, quantum kernel methods have been shown to provide an exponential spee... 详细信息
来源: 评论
COVID-19 Infected Lung Computed Tomography Segmentation and Supervised Classification Approach
收藏 引用
Computers, Materials & Continua 2021年 第7期68卷 391-407页
作者: Aqib Ali Wali Khan Mashwani Samreen Naeem Muhammad Irfan Uddin Wiyada Kumam Poom Kumam Hussam Alrabaiah Farrukh Jamal Christophe Chesneau Department of Computer Science Concordia College BahawalpurBahawalpur63100Pakistan Department of Computer Science&IT Glim Institute of Modern StudiesBahawalpur63100Pakistan Institute of Numerical Sciences Kohat University of Science&TechnologyKohat26000Pakistan Institute of Computing Kohat University of Science and TechnologyKohat26000Pakistan Program in Applied Statistics Department of Mathematics and Computer ScienceFaculty of Science and TechnologyRajamangala University of Technology ThanyaburiThanyaburi12110Thailand Departments of Mathematics Faculty of ScienceCenter of Excellence in Theoretical and Computational Science(TaCS-CoE)&KMUTT Fixed Point Research LaboratoryRoom SCL 802 Fixed Point LaboratoryScience Laboratory BuildingKing Mongkut’s University of Technology Thonburi(KMUTT)Bangkok10140Thailand Department of Medical Research China Medical University HospitalTaichung40402Taiwan College of Engineering Al Ain UniversityAl Ain64141United Arab Emirates Department of Mathematics Tafila Technical UniversityTafila66110Jordan Department of Statistics The Islamia University of BahawalpurBahawalpur63100Pakistan 11Department of MathematicsUniversitéde CaenLMNOCaen14032France
The purpose of this research is the segmentation of lungs computed tomography(CT)scan for the diagnosis of COVID-19 by using machine learning *** dataset contains data from patients who are prone to the *** contains t... 详细信息
来源: 评论