咨询与建议

限定检索结果

文献类型

  • 45 篇 会议
  • 20 篇 期刊文献

馆藏范围

  • 65 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 48 篇 工学
    • 29 篇 计算机科学与技术...
    • 22 篇 控制科学与工程
    • 10 篇 电气工程
    • 9 篇 软件工程
    • 4 篇 土木工程
    • 4 篇 农业工程
    • 3 篇 信息与通信工程
    • 3 篇 建筑学
    • 3 篇 测绘科学与技术
    • 3 篇 环境科学与工程(可...
    • 2 篇 光学工程
    • 2 篇 船舶与海洋工程
    • 2 篇 林业工程
    • 2 篇 生物工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 冶金工程
  • 11 篇 理学
    • 3 篇 数学
    • 3 篇 物理学
    • 2 篇 生物学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 地理学
    • 1 篇 海洋科学
  • 8 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 4 篇 图书情报与档案管...
    • 2 篇 工商管理
  • 6 篇 农学
    • 4 篇 作物学
  • 5 篇 医学
    • 5 篇 临床医学
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 8 篇 three-dimensiona...
  • 5 篇 semantics
  • 4 篇 navigation
  • 4 篇 robot kinematics
  • 3 篇 robots
  • 3 篇 robot sensing sy...
  • 3 篇 robot vision sys...
  • 3 篇 pipelines
  • 2 篇 runtime
  • 2 篇 object detection
  • 2 篇 deep learning
  • 2 篇 ray tracing
  • 2 篇 embedded systems
  • 2 篇 selective weedin...
  • 2 篇 neural networks
  • 2 篇 knowledge graph
  • 2 篇 computational mo...
  • 2 篇 location awarene...
  • 2 篇 real-time system...
  • 2 篇 data acquisition

机构

  • 6 篇 osnabruck univ k...
  • 4 篇 knowledge-based ...
  • 4 篇 research departm...
  • 3 篇 robotics in comp...
  • 3 篇 nat robots gmbh ...
  • 3 篇 osnabrück univer...
  • 3 篇 german res ctr a...
  • 3 篇 department of ag...
  • 2 篇 division of envi...
  • 2 篇 mendel universit...
  • 2 篇 university of wi...
  • 2 篇 simulation and d...
  • 2 篇 soil department ...
  • 2 篇 department of so...
  • 2 篇 robotics researc...
  • 2 篇 woodwell climate...
  • 2 篇 osnabruck univ i...
  • 2 篇 tokyo university...
  • 2 篇 lisah univ. mont...
  • 2 篇 academic coordin...

作者

  • 24 篇 hertzberg joachi...
  • 19 篇 wiemann thomas
  • 11 篇 mock alexander
  • 8 篇 porrmann mario
  • 8 篇 thomas wiemann
  • 7 篇 atzmueller marti...
  • 6 篇 niemeyer mark
  • 6 篇 gaal julian
  • 6 篇 puetz sebastian
  • 6 篇 joachim hertzber...
  • 6 篇 eisoldt marc
  • 5 篇 igelbrink felix
  • 5 篇 renz marian
  • 5 篇 alexander mock
  • 4 篇 flottmann marcel
  • 3 篇 jarmer thomas
  • 3 篇 tassemeier marco
  • 3 篇 niecksch lennart
  • 3 篇 rothmann marc
  • 3 篇 tavakoli hamed

语言

  • 61 篇 英文
  • 3 篇 其他
检索条件"机构=Plan-Based Robot Control"
65 条 记 录,以下是61-70 订阅
排序:
HATSDF SLAM – Hardware-accelerated TSDF SLAM for Reconfigurable SoCs
HATSDF SLAM – Hardware-accelerated TSDF SLAM for Reconfigur...
收藏 引用
European Conference on Mobile robots (ECMR)
作者: Marc Eisoldt Marcel Flottmann Julian Gaal Pascal Buschermöhle Steffen Hinderink Malte Hillmann Adrian Nitschmann Patrick Hoffmann Thomas Wiemann Mario Porrmann Computer Engineering and Autonomous Robotics Groups at the Institute of Computer Science Osnabrück University Osnabrück Germany German Research Center for Artificial Intelligence (DFKI) Niedersachsen Lab Plan-Based Robot Control Group Osnabrück Germany
Simultaneous Localization and Mapping (SLAM) is one of the fundamental problems in autonomous robotics. Over the years, many approaches to solve this problem for 6D poses and 3D maps based on LiDAR sensors or depth ca...
来源: 评论
Self-supervised Detection and Pose Estimation of Logistical Objects in 3D Sensor Data
Self-supervised Detection and Pose Estimation of Logistical ...
收藏 引用
International Conference on Pattern Recognition
作者: Nikolas Müller Jonas Stenzel Jian-Jia Chen Plan-Based Robot Control German Research Center for Artificial Intelligence (DFKI) Osnabrück Germany Fraunhofer Institute for Material Flow and Logistics Dortmund Germany Institute of Computer Science Design Automation for Embedded Systems Technical University of Dortmund Dortmund Germany
Localization of objects in cluttered scenes with machine learning methods is a fairly young research area. Despite the high potential of object localization for full process automation in Industry 4.0 and logistical e... 详细信息
来源: 评论
PHEATPRUNER: Interpretable Data-centric Feature Selection for Multivariate Time Series Classification through Persistent Homology
arXiv
收藏 引用
arXiv 2025年
作者: Pham, Anh-Duy Kashongwe, Olivier Basole Atzmueller, Martin Römer, Tim Osnabrück University Joint Lab Artificial Intelligence & Data Science Osnabrück Germany Osnabrück University Institute of Mathematics Osnabrück Germany Osnabrück University Semantic Information Systems Group Osnabrück Germany Research Department Plan-Based Robot Control Osnabrück Germany Department of Sensors and Modelling Potsdam Germany
Balancing performance and interpretability in multivariate time series classification is a significant challenge due to data complexity and high dimensionality. This paper introduces PHEATPRUNER, a method integrating ... 详细信息
来源: 评论
LimeSoDa: A Dataset Collection for Benchmarking of Machine Learning Regressors in Digital Soil Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Schmidinger, Jonas Vogel, Sebastian Barkov, Viacheslav Pham, Anh-Duy Gebbers, Robin Tavakoli, Hamed Correa, Jose Tavares, Tiago R. Filippi, Patrick Jones, Edward J. Lukas, Vojtech Boenecke, Eric Ruehlmann, Joerg Schroeter, Ingmar Kramer, Eckart Paetzold, Stefan Kodaira, Masakazu Wadoux, Alexandre M.J.-C. Bragazza, Luca Metzger, Konrad Huang, Jingyi Valente, Domingos S.M. Safanelli, Jose L. Bottega, Eduardo L. Dalmolin, Ricardo S.D. Farkas, Csilla Steiger, Alexander Horst, Taciara Z. Ramirez-Lopez, Leonardo Scholten, Thomas Stumpf, Felix Rosso, Pablo Costa, Marcelo M. Zandonadi, Rodrigo S. Wetterlind, Johanna Atzmueller, Martin Osnabrück University Joint Lab Artificial Intelligence and Data Science Osnabrück Germany Department of Agromechatronics Potsdam Germany Piracicaba Brazil The University of Sydney Sydney Institute of Agriculture Sydney Australia Mendel University in Brno Department of Agrosystems and Bioclimatology Brno Czech Republic Leibniz Institute of Vegetable and Ornamental Crops Next Generation Horticultural Systems Grossbeeren Germany Eberswalde University for Sustainable Development Landscape Management and Nature Conservation Eberswalde Germany Soil Science and Soil Ecology Bonn Germany Tokyo University of Agriculture and Technology Institute of Agriculture Tokyo Japan LISAH Univ. Montpellier AgroParisTech INRAE IRD L'Institut Agro Montpellier France Agroscope Field-Crop Systems and Plant Nutrition Nyon Switzerland University of Wisconsin-Madison Department of Soil Science Madison United States Federal University of Viçosa Department of Agricultural Engineering Viçosa Brazil Woodwell Climate Research Center Falmouth United States Academic Coordination Santa Maria Brazil Soil Department Santa Maria Brazil Division of Environment and Natural Resources Aas Norway University of Rostock Chair of Geodesy and Geoinformatics Rostock Germany Federal Technological University of Paraná Dois Vizinhos Brazil BÜCHI Labortechnik AG Data Science Department Flawil Switzerland Imperial College London Imperial College Business School London United Kingdom University of Tübingen Department of Geosciences Tübingen Germany University of Tübingen DFG Cluster of Excellence Machine Learning for Science’ Germany Bern University of Applied Sciences Competence Center for Soils Zollikofen Switzerland Simulation and Data Science Müncheberg Germany Federal University of Jataí Institute of Agricultural Sciences Jatai Brazil Federal University of Mato Grosso Instute of Agricultural and Environmental Scinces Sinop Brazil Department of Soil and Environment Skara
Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for a given context remains challenging and contentious. Benchmarking studies on multiple datasets are neede... 详细信息
来源: 评论
LimeSoDa: A dataset collection for benchmarking of machine learning regressors in digital soil mapping
收藏 引用
Geoderma 2025年 459卷
作者: Schmidinger, Jonas Vogel, Sebastian Barkov, Viacheslav Pham, Anh-Duy Gebbers, Robin Tavakoli, Hamed Correa, Jose Tavares, Tiago R. Filippi, Patrick Jones, Edward J. Lukas, Vojtech Boenecke, Eric Ruehlmann, Joerg Schroeter, Ingmar Kramer, Eckart Paetzold, Stefan Kodaira, Masakazu Wadoux, Alexandre M.J.-C. Bragazza, Luca Metzger, Konrad Huang, Jingyi Valente, Domingos S.M. Safanelli, Jose L. Bottega, Eduardo L. Dalmolin, Ricardo S.D. Farkas, Csilla Steiger, Alexander Horst, Taciara Z. Ramirez-Lopez, Leonardo Scholten, Thomas Stumpf, Felix Rosso, Pablo Costa, Marcelo M. Zandonadi, Rodrigo S. Wetterlind, Johanna Atzmueller, Martin Osnabrück University Joint Lab Artificial Intelligence and Data Science Osnabrück Germany Department of Agromechatronics Potsdam Germany Piracicaba Brazil The University of Sydney Sydney Institute of Agriculture Sydney Australia Mendel University in Brno Department of Agrosystems and Bioclimatology Brno Czech Republic Leibniz Institute of Vegetable and Ornamental Crops Next Generation Horticultural Systems Grossbeeren Germany Eberswalde University for Sustainable Development Landscape Management and Nature Conservation Eberswalde Germany —Soil Science and Soil Ecology Bonn Germany Tokyo University of Agriculture and Technology Institute of Agriculture Tokyo Japan LISAH Univ. Montpellier AgroParisTech INRAE IRD L'Institut Agro Montpellier France Agroscope Field-Crop Systems and Plant Nutrition Nyon Switzerland University of Wisconsin-Madison Department of Soil Science Madison United States Federal University of Viçosa Department of Agricultural Engineering Viçosa Brazil Woodwell Climate Research Center Falmouth United States Academic Coordination Santa Maria Brazil Soil Department Santa Maria Brazil Division of Environment and Natural Resources Aas Norway University of Rostock Chair of Geodesy and Geoinformatics Rostock Germany Federal Technological University of Paraná Dois Vizinhos Brazil BÜCHI Labortechnik AG Data Science Department Flawil Switzerland Imperial College London Imperial College Business School London United Kingdom University of Tübingen Department of Geosciences Tübingen Germany University of Tübingen DFG Cluster of Excellence ‘Machine Learning for Science’ Germany Bern University of Applied Sciences Competence Center for Soils Zollikofen Switzerland Simulation and Data Science Müncheberg Germany Federal University of Jataí Institute of Agricultural Sciences Jatai Brazil Federal University of Mato Grosso Instute of Agricultural and Environmental Scinces Sinop Brazil Department of Soil and Environment Skara S
Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for a given context remains challenging and contentious. Benchmarking studies on multiple datasets are neede... 详细信息
来源: 评论