咨询与建议

限定检索结果

文献类型

  • 351 篇 期刊文献
  • 329 篇 会议
  • 1 册 图书

馆藏范围

  • 681 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 398 篇 工学
    • 198 篇 计算机科学与技术...
    • 152 篇 软件工程
    • 111 篇 电气工程
    • 106 篇 信息与通信工程
    • 95 篇 电子科学与技术(可...
    • 63 篇 光学工程
    • 49 篇 生物工程
    • 45 篇 材料科学与工程(可...
    • 36 篇 控制科学与工程
    • 34 篇 生物医学工程(可授...
    • 29 篇 动力工程及工程热...
    • 25 篇 化学工程与技术
    • 22 篇 机械工程
    • 22 篇 仪器科学与技术
    • 15 篇 土木工程
    • 11 篇 建筑学
    • 11 篇 核科学与技术
    • 10 篇 力学(可授工学、理...
  • 302 篇 理学
    • 144 篇 物理学
    • 138 篇 数学
    • 53 篇 生物学
    • 46 篇 统计学(可授理学、...
    • 29 篇 化学
    • 23 篇 地球物理学
    • 20 篇 系统科学
  • 69 篇 管理学
    • 45 篇 管理科学与工程(可...
    • 26 篇 图书情报与档案管...
    • 21 篇 工商管理
  • 23 篇 医学
    • 20 篇 临床医学
    • 16 篇 基础医学(可授医学...
  • 9 篇 法学
  • 5 篇 农学
  • 4 篇 经济学
  • 2 篇 文学
  • 2 篇 艺术学
  • 1 篇 军事学

主题

  • 21 篇 feature extracti...
  • 18 篇 support vector m...
  • 18 篇 neural networks
  • 18 篇 laboratories
  • 17 篇 image segmentati...
  • 17 篇 signal processin...
  • 16 篇 robustness
  • 14 篇 training
  • 13 篇 face recognition
  • 12 篇 algorithm design...
  • 11 篇 signal processin...
  • 11 篇 image reconstruc...
  • 10 篇 deep neural netw...
  • 10 篇 finite impulse r...
  • 9 篇 filtering
  • 9 篇 digital filters
  • 9 篇 computational mo...
  • 9 篇 image coding
  • 9 篇 polynomials
  • 9 篇 accuracy

机构

  • 20 篇 department of el...
  • 14 篇 department of el...
  • 11 篇 laboratory of si...
  • 10 篇 department of el...
  • 9 篇 digital signal p...
  • 9 篇 space research i...
  • 8 篇 cnes 18 avenue e...
  • 8 篇 information proc...
  • 8 篇 lpp cnrs ecole p...
  • 8 篇 space sciences l...
  • 7 篇 department of el...
  • 7 篇 physics departme...
  • 7 篇 department of el...
  • 7 篇 guangdong-hongko...
  • 7 篇 remote sensing s...
  • 7 篇 lpc2e cnrs 3a av...
  • 7 篇 radboud radio la...
  • 6 篇 national laborat...
  • 6 篇 department of en...
  • 6 篇 department of ra...

作者

  • 30 篇 jafar saniie
  • 15 篇 gabbouj moncef
  • 13 篇 iosifidis alexan...
  • 13 篇 xinrui yu
  • 10 篇 saniie jafar
  • 10 篇 vaivads a.
  • 8 篇 cheung nw
  • 8 篇 chust t.
  • 8 篇 vecchio a.
  • 8 篇 bale s.d.
  • 8 篇 chang chein-i
  • 8 篇 yu xinrui
  • 8 篇 maksimovic m.
  • 8 篇 krasnoselskikh v...
  • 8 篇 steller m.
  • 8 篇 plettemeier d.
  • 7 篇 kretzschmar m.
  • 7 篇 zhu ping
  • 7 篇 m.g. strintzis
  • 7 篇 lorfèvre e.

语言

  • 615 篇 英文
  • 56 篇 其他
  • 10 篇 中文
检索条件"机构=Plasma Processing & Technology Laboratory and Department of Electrical and Computer Engineering"
681 条 记 录,以下是331-340 订阅
排序:
Exploring the robustness of features and enhancement on speech recognition systems in highly-reverberant real environments
arXiv
收藏 引用
arXiv 2018年
作者: Novoa, José Escudero, Juan Pablo Wuth, Jorge Poblete, Victor King, Simon Stern, Richard Yoma, Néstor Becerra Electrical Engineering Department Speech Processing and Transmission Laboratory Universidad de Chile Santiago Chile Institute of Acoustics Universidad Austral de Chile Valdivia Chile Centre for Speech Technology Research University of Edinburgh Edinburgh United Kingdom Department of Electrical and Computer Engineering and Language Technologies Institute Carnegie Mellon University Pittsburgh United States
This paper evaluates the robustness of a DNN-HMM-based speech recognition system in highly-reverberant real environments using the HRRE database. The performance of locally-normalized filter bank (LNFB) and Mel filter... 详细信息
来源: 评论
A Geometric Approach to Second-Order Consensus of Heterogeneous Networked Systems
收藏 引用
IEEE Transactions on Cybernetics 2018年 2018 Jan 9页
作者: Su, Housheng Ye, Yanyan Chen, Xia He, Haibo School of Automation Image Processing and Intelligent Control Key Laboratory of Education Ministry of China Huazhong University of Science and Technology Wuhan 430074 China. China China Department of Electrical Computer and Biomedical Engineering University of Rhode Island Kingston RI 02881 USA. United States
This paper investigates second-order consensus of networked systems with heterogeneous intrinsic nonlinear dynamics via a geometrical method, in which the nonlinear dynamics are governed by both velocity and position.... 详细信息
来源: 评论
Compressively Sensed Image Recognition
arXiv
收藏 引用
arXiv 2018年
作者: Deǧerli, Ayşen Aslan, Sinem Yamaç, Mehmet Sankur, Bülent Gabbouj, Moncef Tampere University of Technology Laboratory of Signal Processing Tampere Finland Ca' Foscari University of Venice European Centre for Living Technology Venice Italy Ege University International Computer Institute Izmir Turkey Boǧaziçi University Electrical and Electronics Engineering Department Istanbul Turkey
—Compressive Sensing (CS) theory asserts that sparse signal reconstruction is possible from a small number of linear measurements. Although CS enables low-cost linear sampling, it requires non-linear and costly recon... 详细信息
来源: 评论
Dense matter with eXTP
收藏 引用
Science China(Physics,Mechanics & Astronomy) 2019年 第2期62卷 28-44页
作者: Anna L.Watts WenFei Yu Juri Poutanen Shu Zhang Sudip Bhattacharyya Slavko Bogdanov Long Ji Alessandro Patruno Thomas E.Riley Pavel Bakala Altan Baykal Federico Bernardini Ignazio Bombaci Edward Brown Yuri Cavecchi Deepto Chakrabarty Jér?me Chenevez Nathalie Degenaar Melania Del Santo Tiziana Di Salvo Victor Doroshenko Maurizio Falanga Robert D.Ferdman Marco Feroci Angelo F.Gambino MingYu Ge Svenja K.Greif Sebastien Guillot Can Gungor Dieter H.Hartmann Kai Hebeler Alexander Heger Jeroen Homan Rosario Iaria Jean in 't Zand Oleg Kargaltsev Aleksi KurkelaTheoretical Physics department CERN XiaoYu Lai Ang Li XiangDong Li ZhaoSheng Li Manuel Linares FangJun Lu Simin Mahmoodifar Mariano Méndez M.Coleman Miller Sharon Morsink Joonas N?ttil? Andrea Possenti Chanda Prescod-Weinstein JinLu Qu Alessandro Riggio Tuomo Salmi Andrea Sanna Andrea Santangelo Hendrik Schatz Achim Schwenk LiMing Song Eva?rámková Benjamin Stappers Holger Stiele Tod Strohmayer Ingo Tews Laura Tolos Gabriel T?r?k David Tsang Martin Urbanec Andrea Vacchi RenXin Xu YuPeng Xu Silvia Zane GuoBao Zhang ShuangNan Zhang WenDa Zhang ShiJie Zheng Xia Zhou Anton Pannekoek Institute for Astronomy University of Amsterdam Shanghai Astronomical Observatory Tuorla Observatory Department of Physics and Astronomy University of Turku Nordita KTH Royal Institute of Technology and Stockholm University Institute of High Energy Physics Chinese Academy Sciences Tata Institute of Fundamental Research Columbia Astrophysics Laboratory Columbia University Institut für Astronomie und Astrophysik Tübingen Universit?t Tübingen Leiden Observatory Leiden University Research Center for Computational Physics and Data Processing Silesian University in Opava Physics Department Middle East Technical University INAF Osservatorio Astronomico di Roma New York University Abu Dhabi Dipartimento di Fisica Enrico Fermi University of Pisa INFN Italian National Institute for Nuclear Physics Department of Physics and Astronomy Michigan State University Department of Astrophysical Sciences Princeton University Mathematical Sciences and STAG Research Centre University of Southampton MIT Kavli Institute for Astrophysics and Space Research DTU Space Technical University of Denmark INAF/IASF Palermo via Ugo La Malfa 153 Universita degli Studi di Palermo Dipartimento di Fisica e Chimica International Space Science Institute (ISSI) Faculty of Science University of East Anglia INAF Istituto di Astrofisica e Planetologie Spaziali Institut für Kernphysik Technische Universit?t Darmstadt ExtreMe Matter Institute EMMI GSI Helmholtzzentrum für Schwerionenforschung GmbH Instituto de Astrof'?sica Pontificia Universidad Católica de Chile Department of Physics & Astronomy Kinard Lab of Physics Clemson University School of Physics and Astronomy Monash University SRON Netherlands Institute for Space Research Department of Physics The George Washington University Faculty of Science and Technology University of Stavanger School of Physics and Mechanical & Electrical Engineering Hubei University of Education Department of Astronomy Xiamen University (Haiyun Campus) School of Astronomy and Space
In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be rep... 详细信息
来源: 评论
Preventive Soot Blowing Strategy Based on State of Health Prediction for Coal-fired Power Plant Boiler
Preventive Soot Blowing Strategy Based on State of Health Pr...
收藏 引用
Chinese Control Conference (CCC)
作者: Yuanhao Shi Jie Wen Xiaoqiong Pang Jianfang Jia Fangshu Cui Jianchao Zeng Jingcheng Wang North University of China School of Electrical and Control Engineering Taiyuan China North University of China School of Computer Science and Technology Taiyuan China Department of Automation and Key Laboratory of System Control and Information Processing Shanghai Jiao Tong University Shanghai China
This paper seeks the optimization of soot-blowing operations for heat transfer surfaces in coal- fired power plant boiler. A preventive soot blowing strategy based on state of health prediction for heat transfer surfa... 详细信息
来源: 评论
First-year ion-acoustic wave observations in the solar wind by the RPW/TDS instrument on board Solar Orbiter
arXiv
收藏 引用
arXiv 2021年
作者: Píša, David Souček, J. Santolík, O. Hanzelka, M. Nicolaou, G. Maksimovic, M. Bale, S.D. Chust, T. Khotyaintsev, Y. Krasnoselskikh, V. Kretzschmar, M. Lorfèvre, E. Plettemeier, D. Steller, M. Štverák, Š. Trávníček, P. Vaivads, A. Vecchio, A. Horbury, T. O'Brien, H. Evans, V. Angelini, V. Owen, C.J. Louarn, P. Institute of Atmospheric Physics Czech Academy of Sciences Bocni II 1401 Prague141 00 Czech Republic Faculty of Mathematics and Physics Charles University V Holesovickach 2 Prague 818000 Czech Republic Southwest Research Institute San AntonioTX78238 United States Mullard Space Science Laboratory University College London Holmbury St. Mary Surrey DorkingRH5 6NT United Kingdom LESIA Observatoire de Paris Université PSL CNRS Sorbonne Université Univ. Paris Diderot Sorbonne Paris Cité 5 place Jules Janssen Meudon92195 France Space Sciences Laboratory University of California BerkeleyCA United States Physics Department University of California BerkeleyCA United States LPP CNRS Ecole Polytechnique Sorbonne Université Observatoire de Paris Université Paris-Saclay Palaiseau Paris France Uppsala Sweden LPC2E CNRS 3A avenue de la Recherche Scientifique Orléans France Université d'Orléans Orléans France CNES 18 Avenue Edouard Belin Toulouse31400 France Technische Universität Dresden Würzburger Str. 35 DresdenD-01187 Germany Space Research Institute Austrian Academy of Sciences Graz Austria Astronomical Institute The Czech Academy of Sciences Prague Czech Republic Department of Space and Plasma Physics School of Electrical Engineering and Computer Science Royal Institute of Technology Stockholm Sweden Radboud Radio Lab Department of Astrophysics Radboud University Nijmegen Netherlands Department of Physics Imperial College LondonSW7 2AZ United Kingdom Institut de Recherche en Astrophysique et Planétologie 9 Avenue du Colonel ROCHE BP 4346 Toulouse Cedex 431028 France
Context. Electric field measurements of the Time Domain Sampler (TDS) receiver, part of the Radio and plasma Waves (RPW) instrument on board Solar Orbiter, often exhibit very intense broadband wave emissions at freque... 详细信息
来源: 评论
Morphological geodesic active contour based automatic aorta segmentation in thoracic CT images
Morphological geodesic active contour based automatic aorta ...
收藏 引用
International Conference on computer Vision and Image processing, CVIP 2016
作者: Dasgupta, Avijit Mukhopadhyay, Sudipta Mehre, Shrikant A. Bhattacharyya, Parthasarathi Computer Vision and Image Processing Laboratory Department of Electronics and Electrical Communication Engineering Indian Institute of Technology Kharagpur West Bengal721302 India Institute of Pulmocare & Research KolkataWest Bengal700156 India
Automatic aorta segmentation and quantification in thoracic computed tomography (CT) images is important for detection and prevention of aortic diseases. This paper proposes an automatic aorta segmentation algorithm i... 详细信息
来源: 评论
Author Correction: BigNeuron: a resource to benchmark and predict performance of algorithms for automated tracing of neurons in light microscopy datasets
收藏 引用
Nature methods 2024年 第10期21卷 1959页
作者: Linus Manubens-Gil Zhi Zhou Hanbo Chen Arvind Ramanathan Xiaoxiao Liu Yufeng Liu Alessandro Bria Todd Gillette Zongcai Ruan Jian Yang Miroslav Radojević Ting Zhao Li Cheng Lei Qu Siqi Liu Kristofer E Bouchard Lin Gu Weidong Cai Shuiwang Ji Badrinath Roysam Ching-Wei Wang Hongchuan Yu Amos Sironi Daniel Maxim Iascone Jie Zhou Erhan Bas Eduardo Conde-Sousa Paulo Aguiar Xiang Li Yujie Li Sumit Nanda Yuan Wang Leila Muresan Pascal Fua Bing Ye Hai-Yan He Jochen F Staiger Manuel Peter Daniel N Cox Michel Simonneau Marcel Oberlaender Gregory Jefferis Kei Ito Paloma Gonzalez-Bellido Jinhyun Kim Edwin Rubel Hollis T Cline Hongkui Zeng Aljoscha Nern Ann-Shyn Chiang Jianhua Yao Jane Roskams Rick Livesey Janine Stevens Tianming Liu Chinh Dang Yike Guo Ning Zhong Georgia Tourassi Sean Hill Michael Hawrylycz Christof Koch Erik Meijering Giorgio A Ascoli Hanchuan Peng Institute for Brain and Intelligence Southeast University Nanjing China. Microsoft Corporation Redmond WA USA. Tencent AI Lab Bellevue WA USA. Computing Environment and Life Sciences Directorate Argonne National Laboratory Lemont IL USA. Kaya Medical Seattle WA USA. University of Cassino and Southern Lazio Cassino Italy. Center for Neural Informatics Structures and Plasticity Krasnow Institute for Advanced Study George Mason University Fairfax VA USA. Faculty of Information Technology Beijing University of Technology Beijing China. Beijing International Collaboration Base on Brain Informatics and Wisdom Services Beijing China. Nuctech Netherlands Rotterdam the Netherlands. Janelia Research Campus Howard Hughes Medical Institute Ashburn VA USA. Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta Canada. Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing Anhui University Hefei China. Paige AI New York NY USA. Scientific Data Division and Biological Systems and Engineering Division Lawrence Berkeley National Lab Berkeley CA USA. Helen Wills Neuroscience Institute and Redwood Center for Theoretical Neuroscience UC Berkeley Berkeley CA USA. RIKEN AIP Tokyo Japan. Research Center for Advanced Science and Technology (RCAST) The University of Tokyo Tokyo Japan. School of Computer Science University of Sydney Sydney New South Wales Australia. Texas A&M University College Station TX USA. Cullen College of Engineering University of Houston Houston TX USA. Graduate Institute of Biomedical Engineering National Taiwan University of Science and Technology Taipei Taiwan. National Centre for Computer Animation Bournemouth University Poole UK. PROPHESEE Paris France. Department of Neuroscience Columbia University New York NY USA. Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University New York NY USA. Department of Computer Science Northern Illinois Universit
来源: 评论
Combing context and commonsense knowledge through neural networks for solving winograd schema problems
Combing context and commonsense knowledge through neural net...
收藏 引用
2017 AAAI Spring Symposium
作者: Liu, Quan Jiang, Hui Ling, Zhen-Hua Zhu, Xiaodan Wei, Si Hu, Yu National Engineering Laboratory for Speech and Language Information Processing University of Science and Technology of China Hefei Anhui China Department of Electrical Engineering and Computer Science York University Canada National Research Council Canada Ottawa Canada IFLYTEK Research Hefei China
This paper proposes a general framework to combine context and commonsense knowledge for solving the Winograd Schema (WS) and Pronoun Disambiguation Problems (PDP). In the proposed framework, commonsense knowledge bas... 详细信息
来源: 评论
A computationally efficient detector: Using both the test and training data for disturbance correlation estimation
A computationally efficient detector: Using both the test an...
收藏 引用
2017 International Conference on Radar Systems, Radar 2017
作者: Liu, Jun Zhao, Hong-Yan Liu, Weijian Zhu, Shengqi Liu, Hongwei Li, Hongbin National Laboratory of Radar Signal Processing Xidian University Xi'an710071 China Wuhan Electronic Information Institute Wuhan430019 China Department of Electrical and Computer Engineering Stevens Institute of Technology HobokenNJ07030 United States
This paper examines a target detection problem in colored Gaussian disturbance with an unknown covariance matrix. In many classic adaptive detectors, the covariance estimator is formed by using only the training data.... 详细信息
来源: 评论