作者:
OSTENDORF, DWLEACH, LEHINLEIN, ESXIE, YF1 David W. Ostendorf is an associate professor in the Environmental Engineering Program of the Civil Engineering Department at the University of Massachusetts (Civil Engineering Department
University of Massachusetts Amherst MA 01003). His research interests include unconfined aquifer contamination hazardous waste site remediation and analytical modeling of problems in environmental fluid mechanics. Dr. Ostendorf is a registered professional engineer in Massachusetts and a member of the American Geophysical Union American Society of Civil Engineers Soil Science Society of America Water Pollution Control Federation and Association of Environmental Engineering Professors as well as the National Water Well Association.2 Lowell E. Leach is an environmental engineer with the Robert S. Kerr Environmental Research Laboratory of the U.S. Environmental Protection Agency (RS Kerr Environmental Research Laboratory U.S. EPA P.O. Box 1198 Ada OK74820). Leach received his B.S. ingeological engineering at the University of Oklahoma in 1959 and has been a registered professional engineer in Oklahoma since 1966. With 29 years of experience in field applications of geological engineering he is responsible for developing methodology for sampling ground water and subsurface materials for the Robert S. Kerr Environmental Research Laboratory.3 Erich S. Hinlein is a research assistant in the Environmental Engineering Program of the Civil Engineering Department at the University of Massachusetts (Civil Engineering Department University of Massachusetts Amherst MA 01003). His research interests include ground water pollution hazardous waste site investigation and transport processes in unconfined aquifers. Hinlein graduated with a B.S. in electrical and computer engineering from the University of Massachusetts at Amherst in May 1985 and entered the Environmental Engineering Master's Degree Program in January 1989.4 Yuefeng Xie is a postdoctoral research associate in the Environmental Engineering Program of the Civil E
Two complementary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured fie...
Two complementary field sampling methods for the determination of residual aviation gasoline content in the contaminated capillary fringe of a fine, uniform, sandy soil were investigated. The first method featured field extrusion of core barrels into pint-size Mason jars, while the second consisted of laboratory partitioning of intact stainless steel core sleeves. The barrel extrusion procedure involved jar headspace sampling in a nitrogen-filled glove box, which delineated the 0.7m thick residually contaminated interval for subsequent core sleeve withdrawal from adjacent boreholes. Soil samples removed from the Mason jars (in the field) and sleeve segments (in the laboratory) were subjected to methylene chloride extraction and gas chromatographic analysis to compare their aviation gasoline content. The barrel extrusion sampling method yielded a vertical profile with 0.10m resolution over an essentially continuous 5.0m interval from the ground surface to the water table. The sleeve segment alternative yielded a more resolved 0.03m vertical profile over a shorter 0.8m interval through the capillary fringe. The two methods delivered precise estimates of the vertically integrated mass of aviation gasoline at a given horizontal location, and a consistent view of the vertical profile as well. In the latter regard, a 0.2m thick lens of maximum contamination was found in the center of the capillary fringe, where moisture filled all voids smaller than the mean pore size. The maximum peak was resolved by the core sleeve data, but was partially obscured by the barrel extrusion observations, so that replicate barrels or a half-pint Mason jar size should be considered for data supporting vertical transport analyses in the absence of sleeve partitions.
作者:
NARAYANAN, VMANELA, MLADE, RKSARKAR, TKDepartment of Electrical and Computer Engineering
Syracuse University Syracuse New York 13244-1240 Viswanathan Narayanan was born in Bangalore
India on December 14 1965. He received the BE degree in Electronics and Communications from B.M.S. College of Engineering Bangalore in 1988. He joined the Department of Electrical Engineering at Syracuse University for his graduate studies in 1989 where he is currently a research assistant. His research interests are in microwave measurements numerical electromagnetics and signal processing. Biographies and photos are not available for M. Manela and R. K. Lade.Tapan K. Sarkar (Sf69-M'76-SM'X1) was born in Calcutta. India
on August 2 1948. He received the BTech degree from the Indian Institute of Technology Kharagpur India in 1969 the MScE degree from the University of New Brunswick Fredericton Canada in 1971. and the MS and PhD degrees from Syracuse University. Syracuse NY in 1975. From 1975-1976 he was with the TACO Division of the General Instruments Corporation. He was with the Rochester Institute of Technology (Rochester NY) from 1976-1985. He was a Research Fellow at the Gordon Mckay Laboratory Harvard University Cambridge MA from 1977 to 1978. He is now a Professor in the Department of Electrical and Computer Engineering Syracuse University. His current research interests deal with numerical solutions of operator equations arising in electromagnetics and signal processing with application to system design. He obtained one of the “ best solution” awards in May 1977 at the Rome Air Development Center (RADC) Spectral Estimation Workshop. He has authored or coauthored more than 154 journal articles and conference papers and has written chapters in eight books. Dr. Sarkar is a registered professional engineer in the state of New York. He received the Best Paper Award of the IEEE Transactions on Electromagnetic Compatibility in 1979. He was an Associate Editor for feature articles of the lEEE Antennas arid Propagation Sociefy Newsletter and was
Dynamic analysis of waveguide structures containing dielectric and metal strips is presented. The analysis utilizes a finite difference frequency domain procedure to reduce the problem to a symmetric matrix eigenvalue...
详细信息
Dynamic analysis of waveguide structures containing dielectric and metal strips is presented. The analysis utilizes a finite difference frequency domain procedure to reduce the problem to a symmetric matrix eigenvalue problem. Since the matrix is also sparse, the eigenvalue problem can be solved quickly and efficiently using the conjugate gradient method resulting in considerable savings in computer storage and time. Comparison is made with the analytical solution for the loaded dielectric waveguide case. For the microstrip case, we get both waveguide modes and quasi-TEM modes. The quasi-TEM modes in the limit of zero frequency are checked with the static analysis which also uses finite difference. Some of the quasi-TEM modes are spurious. This article describes their origin and discusses how to eliminate them. Numerical results are presented to illustrate the principles.
This paper presents a graph model of software evolution. We seek to formalize the objects and activities involved in software evolution in sufficient detail to enable automatic assistance for maintaining the consisten...
详细信息
This paper presents a graph model of software evolution. We seek to formalize the objects and activities involved in software evolution in sufficient detail to enable automatic assistance for maintaining the consistency and integrity of an evolving software system. This includes automated support for propagating the consequences of a change to a software system. [ABSTRACT FROM AUTHOR]
Within the computerscience curriculum, the social and ethical aspects of computing can be partially addressed with a specialized course on these issues. This paper discusses one such course, briefly examining its str...
详细信息
This paper presents an assistant database design system, ExpertDB, which is based on entity-relationship (ER) approach. The approach is to synthesize a normalized ER schema (which consists of entity set and relationsh...
ISBN:
(纸本)9780897913720
This paper presents an assistant database design system, ExpertDB, which is based on entity-relationship (ER) approach. The approach is to synthesize a normalized ER schema (which consists of entity set and relationship set expressions) from functional dependencies (FD). Using as input the set of attributes and FD's, we derive the minimal cover of FD's, partition and regroup FD's, and finally form the entities and relationship sets. In every aspect of these derivations, ExpertDB provides assistance to the user, which is usually the database administrator (DBA), in the database design. The resulting ER schema is then mapped to relational schema.
Herein, it is shown that by exploiting integral definitions of well known special functions, through generalizations and differentiations, broad classes of definite integrals can be solved in closed form or in terms o...
详细信息
It is shown that Symbolic Computation provides excellent tools for solving quantum mechanical problems by perturbation theory. The method presented herein solves for both the eigenfunctions and eigenenergies as power ...
详细信息
It is shown that Symbolic Computation provides excellent tools for solving quantum mechanical problems by perturbation theory. The method presented herein solves for both the eigenfunctions and eigenenergies as power series in the order parameter where each coefficient of the perturbation series is obtained in closed form. The algorithms are expressed in the Maple symbolic computation system but can be implemented on other systems. This approach avoids the use of an infinite basis set and some of the complications of degenerate perturbation theory. It is general and can, in principle, be applied to many separable systems.
We present a real-time robot motion planner that is fast and complete to a resolution. The technique is guaranteed to find a path if one exists at the resolution, and all paths returned are safe. The planner can handl...
ISBN:
(纸本)9780897913447
We present a real-time robot motion planner that is fast and complete to a resolution. The technique is guaranteed to find a path if one exists at the resolution, and all paths returned are safe. The planner can handle any polyhedral geometry of robot and obstacles, including disjoint and highly concave unions of *** planner uses standard graphics hardware to rasterize configuration space obstacles into a series of bitmap slices, and then uses dynamic programming to create a navigation function (a discrete vector-valued function) and to calculate paths in this rasterized space. The motion paths which the planner produces are minimal with respect to an L1 (Manhattan) distance metric that includes rotation as well as *** examples are shown illustrating the competence of the planner at generating planar rotational and translational plans for complex two and three dimensional robots. Dynamic motion sequences, including complicated and non-obvious backtracking solutions, can be executed in real time.
We consider the problem of evaluating a boolean function P(x 1 ,…,x n ), by asking queries of the form “x i =?”, and receiving answers which may not always be truthful. Assuming that the total number of lies does n...
详细信息
We consider the problem of evaluating a boolean function P(x 1 ,…,x n ), by asking queries of the form “x i =?”, and receiving answers which may not always be truthful. Assuming that the total number of lies does not exceed E, we present an algorithm with cost O(n+s P E+t P E), where s P is the maximal size of a minterm of P(x) and t P ‘is the maximal size of a maxterm. We also prove that if P is monotone, then any algorithm for evaluating P must ask Ω(s P E+t P E) queries for some input.
The existence of modularity in the organization of nervous systems (e.g. cortical columns and olfactory glomeruli) is well known. We show that localized activity patterns in a layer of cells, collective excitations, c...
The existence of modularity in the organization of nervous systems (e.g. cortical columns and olfactory glomeruli) is well known. We show that localized activity patterns in a layer of cells, collective excitations, can induce the formation of modular structures in the anatomical connections via a Hebbian learning mechanism. The networks are spatially homogeneous before learning, but the spontaneous emergence of localized collective excitations and subsequently modularity in the connection patterns breaks translational symmetry. This spontaneous symmetry breaking phenomenon is similar to those which drive pattern formation in reaction-diffusion systems. We have identified requirements on the patterns of lateral connections and on the gains of internal units which are essential for the development of modularity. These essential requirements will most likely remain operative when more complicated (and biologically realistic) models are considered.
暂无评论