When we think of energy issues, we generally conjure up ideas of conflicts between producers and consumers. These translate into visions of grand ideological conflicts between the left and the right. Wildavsky and Ten...
When we think of energy issues, we generally conjure up ideas of conflicts between producers and consumers. These translate into visions of grand ideological conflicts between the left and the right. Wildavsky and Tennenbaum (1981) speak of battles between "preservationists" and "industrialists." Kalt (1981) argues that "[tihe domestic energy 'crisis' is, far more than anything else, a quarrel over income distribution." Ideological straight fights are marked by a single dimension of conflict. In particular, ideological politics, as opposed to religious or ethnic cleavages, suggests a battle between left and right--or, producers and consumers in the case of energy battles. When there are only two contestants, one is sure to win if the group decision is made by majority rule. Even in the United States Congress, where complex rules often frustrate coherent policy formation, strongly-held positions can prevail over obstructionists if they are determined enough. Yet, during the 1970s many attempts to form a "national energy policy" failed. In the 1980s Congress again stumbled in making natural gas policy as it defeated both decontrol and recontrol proposals.
We address the problem of assigning multiple copies of n independently developed versions of a program to a set of m(m > n) possibly heterogeneous processors to maximize system reliability. This problem is viewed a...
详细信息
作者:
CARLSON, CMFIREMAN, HCraig M. Carlson:is a general engineer in the Computer Aided Engineering Division (SEA-507). He received his B.S. degree in naval architecture from the University of Michigan in 1970. In 1972
he was selected for the NAVSEC Hull Division's Long Term Training Program at the University of Michigan and received his M. S. E. degree in naval architecture in 1973. Additionally he has done graduate work in computer science at The Johns Hopkins University. Mr. Carlson began his career with the Naval Ship Engineering Center in 1970 where he worked in the Ship Arrangements Branch. While in ship arrangements he was task leader for the PGG PCG PHM and MCM ship designs. In addition he was project engineer for shipboard stowage ship space classification system and ship standard nomenclature. He was technical manager of the CASDAC arrangement subsystem and the CASDAC hull design system. In 1982 he joined what is now the Computer Aided Engineering Division. Currently he is the manager for the computer supported design version XX system. Besides ASNE which he joined in 1972 he is a member of SNA ME and the U.S. Naval Institute. Howard Fireman:is a naval architect in the Ship Arrangements Design Division (SEA-55W1). He received his B. S. E. degree in naval architecture from the University of Michigan in 1979. In 1983
he was selected for NavSea's Long Term Training Program at the University of Michigan and received his M. S. E. degree in naval architecture with a specialization in ship production and computer aided ship design in 1985. Mr. Fireman began his career with the Naval Ship Engineering Center in 1977 as an engineering cooperative student. Since graduating from the NavSea EIT program he has worked in the Ship Arrangements Design Division. He was task leader for the AOE-6 AE-36 T-AH ARS-SO and SWATH T-AGOS ship designs. He is technical manager of the CSD General Arrangement Design System and is currently the Hull Group CSD coordinator. Besides ASNE which he joined in 1979 he is a member of SNA ME ASE a
The ever increasing complexity of ships coupled with cost, schedule, and resource constraints require innovative methods by the Naval Sea Systems Command's ship design community to meet this challenge. This paper ...
详细信息
The ever increasing complexity of ships coupled with cost, schedule, and resource constraints require innovative methods by the Naval Sea Systems Command's ship design community to meet this challenge. This paper describes the effort by the NavSea Ship Arrangement Design Division to dramatically improve its ship design capability by the use of a system of computer-based design tools called the General Arrangement Design System. The General Arrangement Design System (GADS) is based on the engineering requirements of the ship arrangement design process. GADS is currently being used as a production engineering tool. This paper is organized into two parts. Part I describes the General Arrangement Design System, and Part II describes the general arrangement design methodology.
A methodology for the rigorous management of service (performance) requirements on a computer system is introduced utilizing statistical theory. Random sampling techniques coupled with non-parametric probability inequ...
详细信息
作者:
STERN, HMETZGER, RHoward K. Stern:is presently vice president of Robotic Vision Systems
Inc. He received a bachelor of electrical engineering degree from College of the City of New York in 1960. Mr. Stern joined Dynell Electronics Corporation in 1971 and became part of the Robotic Vision Systems
Inc. staff at the time of its spin-off from Dynell. He was program manager of the various three-dimensional sensing and replication systems constructed by Dynell and Robotic Vision Systems. As program manager his responsibilities encompassed technical administrative and operational areas. The first two portrait sculpture studio systems and the first three replication systems built by Robotic Vision Systems Inc. were designed manufactured and operated under his direction. Before joining Dynell
Mr. Stern was a senior engineer at Instrument Systems Corporation and chief engineer of the Special Products Division of General Instrument Corporation. Prior to these positions Mr. Stern was chief engineer of Edo Commercial Corporation. At General Instrument and Edo Commercial he was responsible for the design and manufacture of military and commercial avionics equipment. Mr. Stern is presently responsible for directing the systems design and development for all of the company's programs.Robert J. Metzger:is currently engineering group leader at Robotic Vision Systems
Inc. He graduated summa cum laude from the Cooper Union in 1972 with a bachelor of electrical engineering degree. Under sponsorship of a National Science Foundation graduate fellowship he graduated from the Massachusetts Institute of Technology in 1974 with the degrees of electrical engineer and master of science (electrical engineering). In 1979 Mr. Metzger graduated from Polytechnic Institute of New York with the degree of master of science (computer science). Since 1974
Mr. Metzger has been actively engaged in the design of systems and software for noncontact threedimensional optical measurement for both military and commercial applications. Of particular note are his c
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide in...
详细信息
Ship's propellers are currently measured by manual procedures using pitchometers, templates and gauges. This measurement process is extremely tedious, labor intensive and time consuming. In an effort to provide increased accuracy, repeatability and cost effectiveness in propeller manufacture, an automated propeller optical measurement system (APOMS) has been built which rapidly and automatically scans an entire ship's propeller using a 3-D vision sensor. This equipment is integrated with a propeller robotic automated templating system (PRATS) and the propeller optical finishing system (PROFS) which robotically template and grind the propeller to its final shape, using the APOMS-derived data for control feedback. The optical scanning and the final shape are both controlled by CAD/CAM data files describing the desired propeller shape. An automated propeller balancing system is incorporated into the PROFS equipment. The APOMS/PRATS/PROFS equipment is expected to provide lower propeller manufacturing costs.
作者:
Steams, Norman S.Bashook, Philip G.Norman S. Stearns
M.D. Dr. Steams is dean for Post-Graduate Education and Sara Murray Jordan Professor of Medicine at the Tufts University School of Medicine. He is also professor of Health Management (visiting) at the Sloan School of Management of Massachusetts Institute of Tkchnolow. He is past-president of the Association for Hospital Medical Education and formerly director of the Post-Graduate Medical Institute of Massachusetts. After starting in cardiovascular research he shifted to and published extensively in continuing medical education. He introduced and developed the concept of the Core Medical Library for practitioners in community hospitals and has a number of publications including co-authoring a book on library practice in hospitals. He is a past chairman of the Liaison Committee for Continuing Medical Education and is a member of the Accreditation Council for Continuing Medical Education. Dr. Bashook is director of the Educational Development Unit at Michael Reese Hospital and Medical Center in Chicago. He is vice chairman of the Accreditation Review Committee of the Accreditation Council for Continuing Medical Education (ACCME) and an associate professor of Medical Education at the Center for Educational Development
University of Illinois Health Science Center Chicago. He has published research in problem-oriented medical records program evaluation continuing medical education program development assessing physician competence and performance simulations and physician career choice.
Air cushion vehicles (ACVs) have operated successfully on commercial routes for about twenty years. The routes are normally quite short; the craft are equipped with radar and radio navigation aids and maintain continu...
详细信息
Air cushion vehicles (ACVs) have operated successfully on commercial routes for about twenty years. The routes are normally quite short; the craft are equipped with radar and radio navigation aids and maintain continuous contact with their terminals. Navigation of these craft, therefore, does not present any unusual difficulty. The introduction of air cushion vehicles into military service, however, can present a very different picture, especially when external navigation aids are not available and the craft must navigate by dead reckoning. This paper considers the problems involved when navigating a high-speed air cushion vehicle by dead reckoning in conditions of poor visibility. A method is presented to assess the ACV's navigational capability under these circumstances. A figure of merit is used to determine the sensitivity of factors which affect navigation such as the range of visibility, point-to-point distance, speed, turning radius and accuracy of onboard equipment. The method provides simplistic but adequate answers and can be used effectively to compare the-capability and cost of alternative navigation concepts.
We study monotonic and non-monotonic Logics of Knowledge, giving decision procedures and completeness results. In particular we develop a model theory for a non-monotonic Logic of Knowledge and show that it correspond...
详细信息
作者:
PAIGE, KKCONVERSE, RAUSNLCdr. Kathleen K. Paige
USN:graduated with a BA from the University of New Hampshire in 1970. She received her commission from Officer Candidate School in April 1971 and performed her first tour of duty with VFP-63 NAS Miramar. LCdr. Paige then received her MS from the Naval Post Graduate School in June 1976 and returned to San Diego to serve as Head Support Software Division at the Fleet Combat Direction System Support Activity. In May 1981 she reported to NA VSEA (PMS-408) where she served initially as Chairman of the NAVMAT Software Engineering Environment Working Group. She has been assigned as Deputy AN/UYK-43 Acquisition Manager since October 1981. LCdr. Paige was designated a fully qualified Engineering Duty Officer in December 1983. Robert A. Converse:is presently the Acquisition Manager for the Ada Language System/Navy (ALS/N) for the Naval Sea Systems Command Tactical Embedded Computer Resources Project. As such
he is responsible for the definition and development of the ALS/N to be provided as a Navy standard computer programming system for Navy mission critical applications. Mr. Converse received a Bachelor of Science degree in Physics from Wheaton College Wheaton II. He spent fourteen years with the Naval Underwater Systems Center Newport Rhode Island during which time he designed and developed the Fortran compiler for the Navy Standard AN/UYK-7 computer. Also during that period he received a Master of Science degree in Computer Science from the University of Rhode Island. His thesis for that degree was entitled “Optimization Techniques for the NUSC Fortran Cross-Compiler”. Mr. Converse started his involvement with the Ada program in 1975 with the initial “Strawman” requirements review. Subsequently he was named as the Navy Ada Distinguished Reviewer and was intimately involved in the selection and refinement of the Ada language as it evolved to become ANSI/MIL-STD-1815A.
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of co...
The U.S. Navy introduced the use of digital computers in mission critical applications over a quarter of a century ago. Today, virtually every system in the current and planned Navy inventory makes extensive use of computer technology. computers embedded in mission critical Navy systems are integral to our strategic and tactical defense capabilities. Thus, the military power of the U.S. Navy is inextricably tied to the use of programmable digital computers. The computerprogram is the essential element that embodies the system “intelligence”. In addition, it provides the flexibility to respond to changing threats and requirements. However, this very flexibility and capability poses a host of difficulties hindering full realization of the advantages. This paper describes the lessons learned about computerprogram development over the past twenty five years and discusses a software engineering process that addresses these lessons. It then describes how Ada and its related Ada programming Support and Run-Time Environments foster this software engineering process to improve computerprogram productivity and achieve greater system reliability and adaptibility. Finally, the paper discusses how the use of Ada and its environments can enhance the interoperability and transferability of computerprograms among Navy projects and significantly reduce overall life cycle costs for Navy mission critical computerprograms.
暂无评论