Integrating marine renewable energy (MRE) with conventional energy sources and logically constructing island energy systems is crucial for alleviating island energy supply challenges and helping coastal energy systems...
详细信息
Integrating marine renewable energy (MRE) with conventional energy sources and logically constructing island energy systems is crucial for alleviating island energy supply challenges and helping coastal energy systems achieve a sustainable, low-carbon transition. In this study, the status of marine energy utilisation technologies is reviewed, with a focus on advancements in energy conversion equipment, grid integration, and energy storage. The economic feasibility and environmental sustainability of marine energy systems are comparatively analysed to enhance the development and utilisation of marine energy technology while reducing the economic cost of power generation. Suitable equipment is highlighted for islands, with efficient energy generation strategies proposed to achieve cleaner, localised, and cost-effective island integrated energy system (IIES) design. Island energy facilities vary, and integrated development is crucial for building new energy systems. Based on the types and resources of island energy, IIESs are constructed for hierarchical energy utilisation and multi-energy coupling, coordinating resources to achieve source–grid–load–storage integration. The optimisation of IIESs is reviewed, with a focus on modelling methods, intelligent algorithm development, and system simulation. This study differs from previous research as it considers the integration of marine energy into existing systems to achieve comprehensive integration of multiple energy sources. Additionally, optimisation and solution methods for IIES models are summarised. To integrate complex, multivariable energy systems and create stable and predictable outputs, marine energy and load forecasting methods are explored. Overall, this study supports the advancement of marine energy utilisation, focusing on its progressive integration into island energy systems as the efficiency of marine energy improves. This work aims to inspire the development of new functions and modules based on existi
作者:
COMSTOCK, ENKEANE, RGMr. Edward N. Comstock is currently Head of the Surface Ship Hydrodynamics Section (SEA 32132) of the Hull Form Design
Performance and Stability Branch Naval Sea Systems Command. He received his B.S.E. degree in Naval Architecture and Marine Engineering in 1970 and his M.S. degree in Ship Hydrodynamics in 1974 both from the University of Michigan. Mr. Comstock began his professional career with the U.S. Navy in 1974 as a Seakeeping Specialist in the Hull Form and Fluid Dynamics Branch of the former Naval Ship Engineering Center
being involved in improving the design of naval ships through the integration of R&D technology advances into the ship design process. His efforts prior to 1980 were mainly aimed at developing and establishing Seakeeping Performance Assessment and Design Practices. Other responsibilities have included numerous ship performance investigations in still water and in the sea environment in support of ship design and specific Fleet problems. Prior to his employment by the Navy he worked in the Structural and Hydrodynamic Groups of General Dynamics' Electric Boat Division. There his activities spanned the areas of Submarine structural and Hydrodynamic Design and Construction. A member of ASNE since 1978. he is also a member of ASE and SNAME and has been active in supporting the efforts of the SNAME H-7 (Seakeeping) Panel the National Science Foundation (NSF). and the NATO Naval Armaments Group 6/Sub-Group 5 (Seakeeping). Mr. Robert G. Keane
Jr. is presently Head of the Hull Form Design. Performance and Stability Branch (SEA 3213). Ship Design and Integration Directorate (SEA 03). Naval Sea Systems Command (NAVSEA). He received his B.E.S. degree in Mechanical Engineering from The Johns Hopkins University in 1962. his M.S. degree in Mechanical Engineering from the Stevens Institute of Technology in 1967. and his M.S.E. degree in Naval Architecture from the University of Michigan in 1970. Additionally he has done graduate work in Management Science and Operations Research at The Johns Ho
“Seakeeping … is the ability of our ships to go to sea, and Successfully and safely execute their missions despite adverse environmental factors.” — VAdm. R.E. Adamson. USN In June 1975, VAdm. R.E. Adamson, USN, t...
“Seakeeping … is the ability of our ships to go to sea, and Successfully and safely execute their missions despite adverse environmental factors.” — VAdm. R.E. Adamson. USN In June 1975, VAdm. R.E. Adamson, USN, then Commander Naval Surface Forces, U.S. Atlantic Fleet, addressed the participants of the Seakeeping Workshop [1] and established what has come to be a most profound definition of seakeeping as it relates to the U.S. Navy. In those few words he identified the two major issues facing the operator today and provided the focus for all subsequent seakeeping efforts within the design community at the Naval Sea Systems Command (NAVSEA). For it is these two hues of mission sum and safety at sea which are addressed within NAVSEA, for each new ship design and for ships in the Fleet, in terms of: SEAKEEPING PERFORMANCE — Ability to execute mission in a sea environment, and SEAWORTHINESS — Ability to survive in an extreme sea environment. In the past, the design of ships exhibiting superior seakeeping performance and seaworthiness and seaworthiness has been looked upon by many as an art or an academic exercise. The objective of this paper then is to demonstrate clearly that the ability of our ships to execute their missions successfully and safely in a sea environment is not by chance but by design.
Make better use of your company's designable touchpoints with this strategic framework. Not all touchpoints are designable. The ones that are can be classified by design discipline and, surprisingly, the type of s...
Make better use of your company's designable touchpoints with this strategic framework. Not all touchpoints are designable. The ones that are can be classified by design discipline and, surprisingly, the type of service they embody.
暂无评论