咨询与建议

限定检索结果

文献类型

  • 509 篇 会议
  • 268 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 778 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 504 篇 工学
    • 328 篇 计算机科学与技术...
    • 288 篇 软件工程
    • 125 篇 信息与通信工程
    • 95 篇 光学工程
    • 81 篇 控制科学与工程
    • 62 篇 生物工程
    • 56 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 50 篇 生物医学工程(可授...
    • 45 篇 电气工程
    • 30 篇 化学工程与技术
    • 25 篇 仪器科学与技术
    • 16 篇 交通运输工程
    • 15 篇 土木工程
    • 14 篇 航空宇航科学与技...
    • 13 篇 建筑学
    • 9 篇 力学(可授工学、理...
    • 9 篇 材料科学与工程(可...
  • 315 篇 理学
    • 178 篇 数学
    • 106 篇 物理学
    • 72 篇 生物学
    • 65 篇 统计学(可授理学、...
    • 29 篇 化学
    • 23 篇 系统科学
  • 122 篇 管理学
    • 67 篇 管理科学与工程(可...
    • 62 篇 图书情报与档案管...
    • 12 篇 工商管理
  • 32 篇 医学
    • 26 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 16 篇 药学(可授医学、理...
  • 8 篇 法学
  • 6 篇 经济学
  • 6 篇 艺术学
  • 5 篇 教育学
  • 5 篇 农学
  • 4 篇 军事学
  • 2 篇 文学
  • 1 篇 哲学

主题

  • 57 篇 feature extracti...
  • 45 篇 pattern recognit...
  • 42 篇 image processing
  • 40 篇 image segmentati...
  • 28 篇 training
  • 22 篇 support vector m...
  • 21 篇 laboratories
  • 21 篇 computer vision
  • 18 篇 object detection
  • 18 篇 face recognition
  • 18 篇 principal compon...
  • 17 篇 neural networks
  • 17 篇 image reconstruc...
  • 17 篇 shape
  • 16 篇 algorithm design...
  • 16 篇 image analysis
  • 16 篇 robustness
  • 15 篇 histograms
  • 15 篇 artificial intel...
  • 15 篇 image recognitio...

机构

  • 74 篇 image processing...
  • 35 篇 institute of ima...
  • 21 篇 school of inform...
  • 18 篇 state key labora...
  • 17 篇 key laboratory o...
  • 17 篇 institute for pa...
  • 16 篇 school of softwa...
  • 13 篇 school of comput...
  • 12 篇 key laboratory o...
  • 11 篇 key laboratory o...
  • 10 篇 key laboratory o...
  • 10 篇 centre for visio...
  • 9 篇 national laborat...
  • 9 篇 institute of ima...
  • 9 篇 institute of pat...
  • 9 篇 laboratory of im...
  • 9 篇 state key labora...
  • 9 篇 university of ch...
  • 9 篇 pattern recognit...
  • 8 篇 national key lab...

作者

  • 67 篇 ping guo
  • 35 篇 yang jie
  • 32 篇 zhang tianxu
  • 27 篇 guo ping
  • 25 篇 qian yin
  • 23 篇 huang xiaolin
  • 18 篇 jie yang
  • 15 篇 zhou jie
  • 15 篇 ding mingyue
  • 15 篇 tianxu zhang
  • 14 篇 jinwen tian
  • 14 篇 tian jinwen
  • 14 篇 wu xiao-jun
  • 14 篇 liu jian
  • 14 篇 kittler josef
  • 12 篇 li qishen
  • 12 篇 jian liu
  • 12 篇 shen hong-bin
  • 11 篇 meng fandong
  • 11 篇 robi polikar

语言

  • 742 篇 英文
  • 22 篇 中文
  • 14 篇 其他
检索条件"机构=Processing and Pattern Recognition Laboratory"
778 条 记 录,以下是201-210 订阅
排序:
Impulse noise removal in two-dimensional electrophoresis images based on dome recognition  8
Impulse noise removal in two-dimensional electrophoresis ima...
收藏 引用
8th International Conference on BioMedical Engineering and Informatics, BMEI 2015
作者: Ou, Qiaofeng Zhang, Huisheng Li, Lixin Xiong, Bangshu School of Electronic Information Northwestern Polytechnical University Xi'an710072 Hong Kong Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province Nanchang Hangkong University Nanchang330063 China
Two-dimensional gel electrophoresis (2DE) images are often corrupted by impulse noise in broad sense (including various artifacts, such as fingerprints, hairs, gel cracks, strips, water stains, dust and so on). In thi... 详细信息
来源: 评论
A Study of Deep Belief Network Based Chinese Speech Emotion recognition
A Study of Deep Belief Network Based Chinese Speech Emotion ...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Bu Chen Qian Yin Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
This paper presents a deep learning method application to the extraction of emotions included in Chinese speech with a deep belief network (DBN) structure. Eight proper features such as pitch, mel frequency cepstrum c... 详细信息
来源: 评论
Building Extraction Method in Remote Sensing Image
Building Extraction Method in Remote Sensing Image
收藏 引用
International Conference on Data processing Techniques and Applications for Cyber-Physical Systems, DPTA 2019
作者: Han, Qinzhe Zheng, Xin Yin, Qian Chen, Ziyi Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China College of Information Science and Technology University parkPA United States Beijing Normal University Beijing China
Identifying buildings in disaster areas quickly and conveniently plays an important role in post-disaster reconstruction and disaster assessment. Aiming at the technical requirements of earthquake relief projects, thi... 详细信息
来源: 评论
Complete Two-Dimensional PCA for Face recognition
Complete Two-Dimensional PCA for Face Recognition
收藏 引用
International Conference on pattern recognition
作者: Anbang Xu Xin Jin Yugang Jiang Ping Guo Image Processing & Pattern Recognition Laboratory Beijing Normal University Beijing China
We propose a novel method, the complete two-dimensional principal component analysis (complete 2DPCA), for image features extraction. Compared to the original 2DPCA, complete 2DPCA not only gain a higher recognition r... 详细信息
来源: 评论
Parallelization and Optimization of Molecular Dynamics Simulation on Many Integrated Core
Parallelization and Optimization of Molecular Dynamics Simul...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Qian Yin Ruiyi Luo Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Molecular dynamics (MD) simulations are useful in various areas. In this paper, we parallelize and optimize the grid-based MD algorithm on Many Integrated Core (MIC) Architecture. To get full play of the hardware and ... 详细信息
来源: 评论
ECoG Analysis with Affinity Propagation Algorithm
ECoG Analysis with Affinity Propagation Algorithm
收藏 引用
International Conference on Natural Computation (ICNC)
作者: Yuan Yuan An-bang Xu Ping Guo Jia-cai Zhang Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Analyzing notor imagery electrocardiogram (ECoG) signal is very challenging for it is hard to set up a classifier based on the labeled ECoG obtained in the first session and apply it to the unlabeled test data obtaine... 详细信息
来源: 评论
Combining the contrast information with LPQ for texture classification
Combining the contrast information with LPQ for texture clas...
收藏 引用
International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)
作者: Hussain Dawood Hassan Dawood Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Texture classification is an important problem in image analysis. A considerable amount of research work has been done for local or global rotation invariant feature extraction for texture classification. Local invari... 详细信息
来源: 评论
Fast Multiple Scattering in Participating Media with Beamlet Decomposition
Fast Multiple Scattering in Participating Media with Beamlet...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Yuanlong Wang Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
We propose a fast algorithm which is based on the beam let decomposition for real-time rendering of scenes in participating media with multiple scattering. Firstly, the light source radiation is considered as composed... 详细信息
来源: 评论
Dual-cache Structure Based Large Scale Texture Mapping for Real-time Terrain Rendering
Dual-cache Structure Based Large Scale Texture Mapping for R...
收藏 引用
IEEE Conference on Robotics, Automation and Mechatronics
作者: Dong Tian Xiaodong Wang Xin Zheng Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
There are two key problems in efficient large scale texture mapping for terrain rendering-efficient data organization and real time data updating in memory. In order to solve these problems, in this paper we propose a... 详细信息
来源: 评论
Comparison of linear dimensionality reduction methods in image annotation
Comparison of linear dimensionality reduction methods in ima...
收藏 引用
International Workshop on Advanced Computational Intelligence (IWACI)
作者: Shiqiang Li Hussain Dawood Ping Guo Image Processing and Pattern Recognition Laboratory Beijing Normal University Beijing China
Dimension reduction methods are often used to analyzing high dimensional data, linear dimension methods are commonly used due to their simple geometric interpretations and for effective computational cost. Dimension r... 详细信息
来源: 评论