Objective Antimicrobials are used interchangeably in medical practice, contributing to the emergence of resistant microbial strains. Methods This study describes the antimicrobial audit performed by forecasting analys...
详细信息
Objective Antimicrobials are used interchangeably in medical practice, contributing to the emergence of resistant microbial strains. Methods This study describes the antimicrobial audit performed by forecasting analysis of medical records of 846 patients at the Hospital Santa Cruz, Santa Cruz do Sul - Rio Grande do Sul - Brazil. Results Of the patients studied, 134 (15.8%) received antimicrobials. The audit was conducted interactively, with intervention and discussion with the prescriber. Considering the presumptive diagnosis and prescribed drug, it was verified that 74.6% of patients on antimicrobials received what was considered the first choice treatment. Inadequate antimicrobial agent for clinical diagnosis (5.2%) and lack of adjustment for renal function (43.7%) were the most frequent errors. Conclusion A strategic plan aimed at the rational use of antimicrobials based on educational and interventionist practices can help the infection control professional to adjust the routines to improve healthcare quality.
Invisible microplastics (MP) have become a significant problem worldwide in recent years. Although many studies have highlighted the sources, effects, and fate of MPs pollution on various ecosystems in developed count...
详细信息
Invisible microplastics (MP) have become a significant problem worldwide in recent years. Although many studies have highlighted the sources, effects, and fate of MPs pollution on various ecosystems in developed countries, there is limited information on MPs in the marine ecosystem along the northeastern coast of the Bay of Bengal (BoB). Coastal ecosystems along the BoB coasts are critical to a biodiverse ecology that supports human survival and resource extraction. However, the multi-environmental hotspots, ecotoxicity effects, transport mechanisms, fates, and intervention measures to control MP pollution initiatives along the BoB coasts have received little attention. Therefore, this review aims to highlight the multi-environmental hotspots, ecotoxicity effects, sources, fates, and intervention measures of MP in the northeastern BoB to understand how MP spreads in the nearshore marine ecosystem. This study critically evaluates the hotspots and ecotoxic effects of pollution from MP on the coastal multi-environment, e.g., soil, sediment, salt, water, and fish, as well as current intervention measures and additional mitigation recommendations. This study identified the northeastern part of the BoB as a hotspot for MP. In addition, the transport mechanisms and fate of MP in different environmental compartments are highlighted, as are research gaps and potential future research areas. Research on the ecotoxic effects of MP on BoB marine ecosystems must be a top priority, given the increasing use of plastics and the presence of significant marine products worldwide. The knowledge gained from this study would inform decision-makers and stakeholders in a way that could reduce the impact of the legacy of micro- and nanoplastics in the area. This study also proposes structural and non-structural measures to mitigate the effects of MPs and promote sustainable management.
作者:
BENNETT, RAWSONUSN Chief of Naval ResearchTHE AUTHOR was born on June 16
1905. in Chicago Illinois. He was appointed to the U. S. Naval Academy Annapolis. Maryland from California in 1923. Graduated and commissioned Ensign on June 2 1921 he subsequently advanced to the rank of Captain to date from March 20 1945. In December 1955 he was appointed Rear Admiral to date from January 3 1956. Following graduation in 1927 he joined the USS California flagship of the Battle Fleet. Later in 1928. he was assigned communication duty on the staff of Commander Battle Fleet serving as such until August 1930. In November of that year he reported on board the USS Isabel for duty on Asiatic Station and in October 1932 was transferred to the USS Rochester. He completed his Asiatic tour of duty in the USS Houston in 1933. Detached from this vessel he returned to the United States and joined the USS Idaho. After 7 years of sea duty he returned to Annapolis Maryland for postgraduate instruction in radio (electronic) engineering. He completed the course in May 1936 and was assigned to the University of California Berkeley for additional postgraduate work receiving the Master of Science degree in Electrical Engineering after which he reported aboard the USS Concord. Continuing sea duty he joined the staff of Commander Destroyer Division Nineteen (later redesignated Destroyer Fifty) in April 1938 and served as Radio and Sound Officer until June 1941. Starting in July 1939 he set up the technical program of the first fleet Sound School at San Diego California. In July 1941 he reported to the Bureau of Ships Navy Department Washington D.C. There he served first as Head of the Underwater Sound Design Section of the Radio Division and later Head of Electronics Design Division from 1943 to 1946. He was awarded the Legion of Merit “for exceptionally meritorious conduct” during this tour of duty. Upon leaving the Bureau of Ships in August 1946 he reported as Director of the U. S. Navy Electronics Laboratory Point Loma
暂无评论