作者:
TUCK, EFPATTERSON, DPSTUART, JRLAWRENCE, MHCalling Communications Corporation. 1900 West Garvey Ave
South. Suite 200 West Covina CA 91790 USA. Chairman of Calling Communications Corporation. He is also the Managing Director of Kinship Venture Management
Inc. the general partner of Kinship Partners 11 and a General Partner of Boundary the general partner of The Boundary Fund. As a venture capitalist he has founded or participated in founding several telecommunications companies including Calling Communications Corporation Magellan Systems Corporation
manufactures of Global Positioning System receivers Applied Digital Access
manufacturer of DS-3 test access and network performance monitoring equipment Endgate Technology Corporation
specialists in satellite phased array antennas and Poynting Systems Corporation. now a division of Reliance Corporation
manufacturers of fibre optic transport equipment. He was a founder of Kebby Microwave Corporation where he invented the first solid-state. frequency-modulated commercial microwave link system. The company was acquired by ITT Corporation where he rose to the position of V.P. and Technical Director of ITT North America Telecommunications Inc. Subsequently he was V.P. of Marketing and Engineering at American Telecommunications Inc. (ATC). He was founding Director of American Telecom Inc. a joint venture between ATC and Fujitsu and has served on more than 20 boards of directors including those of three public companies. He has authored articles on microwave engineering and telephone signalling and was a contributor to Reference Data For Radio Engineers. He is a graduate of the University of Missouri at Rolla where he was later awarded an honorary Professional degree and serves on its Academy of Electrical Engineering. Mr Tuck is a Senior Member of the IEEE a Fellow of the Institution of Engineers (Australia) a Professional Member of the AIAA and a registered professional engineer in three states. More than 25 years of experience in the telecommunications industry where he has been responsibl
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's la...
详细信息
There is a very large demand for basic telephone service in developing nations, and remote parts of industrialized nations, which cannot be met by conventional wireline and cellular systems. This is the world's largest unserved market. We describe a system which uses recent advances in active phased arrays, fast-packet switching technology, adaptive routeing, and light spacecraft technology, in part based on the work of the Jet Propulsion Laboratory and on recently-declassified work done on the Strategic Defense Initiative, to make it possible to address this market with a global telephone network based on a large low-Earth-orbit constellation of identical satellites. A telephone utility can use such a network to provide the same modern basic and enhanced telephone services offered by telephone utilities in the urban centres of fully-industrialized nations. Economies of scale permit capital and operating costs per subscriber low enough to provide a service to all subscribers, regardless of location, at prices comparable to the same services in urban areas of industrialized nations, while generating operating profits great enough to attract the capital needed for its construction. The bandwidth needed to support the capacity needed to gain these economies of scale requires that the system use K(alpha)-band frequencies. This choice of frequencies places unusual constraints on the network design, and in particular forces the use of a large number of satellites. Global demand for basic and enhanced telephone service is great enough to support at least three networks of the size described herein. The volume of advanced components, and services such as launch services, required to construct and replace these networks is sufficient to propel certain industries to market leadership positions in the early 21st Century.
作者:
VINROOT, CAORNER, JGUSNCapt. Charles A. Vinroot
USN (Ret.)retired from the U.S. Navy in September 1991 following over 27 years of active duty as an engineering duty officer. He holds a BSEE from North Carolina State University and a MSEE and professional degree from the U.S. Naval Postgraduate School. During his naval career he served on USSIndependence (CVA-62) and USSLuce (DLC-7/DDC-38). He also served at Supship Quincy Mass. and Hunters Point Naval Shipyard. He was stationed in Washington D.C. with assignments at CNO (OP 98) ASN (S&L) and the Naval Sea Systems Command. Captain Vinroot was technical director of the Battleship Reactivation Program (PMS 378) technical director of the Destroyer Acquisition Program (PMS 389) and deputy program manager of the Amphibious Warfare and Strategic Sealift Program (PMS 377). Most recently he served as program manager for Gas Turbine Surface Combatants (PMS 314) and Surface Combatants (PMS 330). Captain Vinroot is now employed by PRC Inc. and serves as technical director for the Advanced Technology Division in Crystal City Va. Jeffery G. Ornergraduated from Wittenberg University in Springfield
Ohio in 1979 with a bachelor of arts degree in political science and earned a master's of science degree in business from The American University in Washington D.C. in 1982. He has ten years of professional experience with the Naval Sea Systems Command in positions with responsibilities for logistic support planning policy and delivery computer-aided acquisition and logistic support and Fleet Modernization Program (FMP) and ship construction issues. He was a key player in establishing the current FMP integrated logistic support (ILS) process and in implementing of the Ships' Configuration and Logistic Support Information System (SCLSIS). His current position as Fleet Logistic Support Branch head for the Surface Combatant Program includes responsibility for logistic support and management of ship configuration and logistic data for all surface combatant ships (except for Aegis ships). In
USS Ingraham (FFG-61) is the prototype ship for NavSea's Advanced Technical Information System (ATIS). ATIS is a digital technical library, which holds on optical disks the ship's 2,000 technical manuals and 7...
详细信息
USS Ingraham (FFG-61) is the prototype ship for NavSea's Advanced Technical Information System (ATIS). ATIS is a digital technical library, which holds on optical disks the ship's 2,000 technical manuals and 73,000 drawing sheets. It contains a detailed ship's configuration index (derived from SCLSIS) to lead the user to the proper drawing or manual, and it replaces the ship's aperture cards and the second (library) copy of the technical manuals. ATIS, and the data standards established and tested through ATIS development, will be the technical library portion of micro-SNAP and SNAP III. It also forms an important part of NavSea's plans to utilize EDMICS data. This paper describes the goals and technical concepts behind the development of ATIS. Problems encountered, solutions developed, and lessons learned are detailed. Special attention was paid to the application of the Computer Aided Acquisition and Logistic Support (CALS) standards, problems caused by conflicts and ambiguities in those standards, the standards. Original program goals are compared with actual operational experiences. Plans for future expansion are outlined, including applications of this technology in the availability planning and execution process. A comparison is developed among the various methods of optical imaging and their costs and benefits.
作者:
LINDGREN, JRSOLITARIO, WAMOORE, APSTREIFF, MAJohn R. Lindgren
Jr:. is vice president for engineering at Ingalls Shipbuilding Inc. a Division of Litton Industries in Pascagoula Miss. He joined Ingalls in 1958 and has held various positions in the Engineering Division and participated in the design of numerous merchant ships drill rigs submarines and surface combatants and auxiliary support ships. Mr. Lindgren is a 1958 graduate of the University of Southwest Louisiana. His degree is in mechanical engineering and he is also a licensed professional engineer. William A. Solitario:is the director of advanced technology at Ingalls Shipbuilding
Inc. in Pascagoula Miss. He received his B.S. degree in chemical engineering from the City University of New York and has 28 years experience in marine engineering and design. His current responsibilities include the direction of Ingalls' IRAD programs and several Navy-funded R&D programs to improve ship's performance and reduce ship's operating costs. He is a member of the Society of Naval Architects and Marine Engineers and past chairman of the Gulf Section East Area. Arnold P. Moore:is the director
design engineering at Ingalls Shipbuilding where he is responsible for all new construction design and engineering activities. Prior to promotion to his current position Mr. Moore served as chief naval architect at Ingalls. He has 24 years experience in ship design construction and repair. Mr. Moore holds the professional degree of ocean engineer as well as a master's degree in naval architecture and marine engineering from MIT. He also earned a bachelor's degree in naval science from the U.S. Naval Academy and is a registered professional engineer. Mr. Moore served as an engineering duty officer in the U.S. Navy and is currently a captain in the Naval Reserve. He is a past chairman of the Gulf Section of the Society of Naval Architects and Marine Engineers and a member of the American Society of Naval Engineers and Sigma Xi. Michel A. Streiff:is the manager of CAD/CAM applications at Ingalls Shipbuilding
Inc. His
The SA'AR-5 Corvette program is the first major warship construction to be entirely accomplished using a 3-dimensional, interference checked computer based design. This paper discusses the organization and approac...
详细信息
The SA'AR-5 Corvette program is the first major warship construction to be entirely accomplished using a 3-dimensional, interference checked computer based design. This paper discusses the organization and approach used to create the design models which form the basis for interference checking as well as the source of extracted production data. The design or product model is the nucleus of the computer data base that defines the configuration of the entire ship. The data base includes geometry, weight, and material, as well as production control data. The ability of the computer to link such diverse information is the key to maintaining configuration control during the course of the design and construction. The ease with which formatted manufacturing data (both N.C. fabrication and installation) can be extracted enables the preparation of detailed packages containing the desired geometry as well as the associated material and sequencing data, thus assuring the producibility of the design. The SA'AR-5 design is CAD/CAM's state of the art in U.S. shipbuilding.
作者:
HINCHEE, REREISINGER, HJRobert E. Hinchee
Ph.D. P.E. is manager of Western Regional Engineering Operations for EA Engineering Science and Technology Inc. (41 Lafayette Circle Lafayette CA 94549). He holds a doctorate in civil and environmental engineering from Utah State University is a registered professional engineer and is a master's level certified hazardous materials manager. He is involved in subsurface hydrocarbon behavior research and practical assessment and remediation of contaminated sites. His experience includes investigation and design of remediation at more than 50 subsurface petroleum spill sites. H. James Reisinger II
CHMM is a vice president of EA Engineering Science and Technology Inc. (Hunt Valley/Loveton Center 15 Loveton Circle Sparks MD 21152) and is responsible for all analytical services. He holds a master's degree from Millersville State University and is a master's level certified hazardous materials manager. He has developed sampling and analytical programs and provided analysis of the resulting data for more than 100 contaminated sites. He is currently responsible for a major laboratory that is in the EPA CLP program and certified in eight states.
Hydrocarbon transport in the subsurface environment occurs in several phases, chiefly the non-aqueous phase liquid (NAPL), dissolved and vapor phases. Mechanisms that influence transport include the physicochemical pr...
Hydrocarbon transport in the subsurface environment occurs in several phases, chiefly the non-aqueous phase liquid (NAPL), dissolved and vapor phases. Mechanisms that influence transport include the physicochemical properties of the specific compounds present (density, vapor pressure, viscosity, hydrophobicity) and the physical and chemical properties of the subsurface environment, including geology, aquifer minerology and ground water hydrology. Hydrocarbon liquids are typically complex mixtures composed of numerous compounds, each with its own individual physicochemical and, therefore, transport properties. Examination of chemical data can provide insights into the transport mechanisms operating at a site: Ground water transport results in relative enrichment by more soluble, less hydrophobic hydrocarbon compounds as a function of distance from a spill; vapor phase transport typically results in relative enrichment in more volatile hydrocarbon *** sites at which subsurface fuel spills resulted in ground water contamination will illustrate the use of transport mechanism theory. At Site 1 a subsurface spill resulted in a NAPL plume approximately 150m (500 feet) and a dissolved hydrocarbon plume resulting from ground water transport of dissolved hydrocarbon approximately 350m (1150 feet) hydraulically downgradient of the source. At Site 2 there was a sudden subsurface fuel spill; ground water pumping with hydrocarbon recovery was begun within a week of spillage. Vapor phase transport resulted in contaminated ground water hydraulically upgradient of the source. In addition, there was cross-contamination at Site 2, probably as the result of contaminated water level gauging equipment, but the chemical characteristics of this contamination were sufficiently obvious to permit its identification. An understanding of transport mechanisms is instrumental in contamination assessment source identification, contaminant fate prediction and design of an appropriate reme
作者:
DETOLLA, JPFLEMING, JRJoseph DeTolla:is a ship systems engineer in the Ship Systems Engineering Division
SEA 56D5 at the Naval Sea Systems Command. His career with the Navy started in 1965 at the Philadelphia Naval Shipyard Design Division. In 1971 he transferred to the Naval Ship Engineering Center. He has held positions as a fluid systems design engineer and auxiliary systems design integration engineer. Mr. DeTolla has worked extensively in the synthesis and analysis of total energy systems notably the design development of the FFG-7 class waste heat recovery system. He is NA VSEA's machinery group computer supported design project coordinator and is managing the development of a machinery systems data base load forecasting algorithms and design analysis computer programs. Mr. DeTolla has a bachelor of science degree in mechanical engineering from Drexel University and a master of engineering administration degree from George Washington University. He is a registered professional engineer in the District of Columbia and has written several technical papers on waste heat recovery and energy conservation. Jeffrey Fleming:is a senior project engineer in the Energy R&D Office at the David Taylor Naval Ship R&D Center. In his current position as group leader for the future fleet energy conservation portion of the Navy's energy R&D program
he is responsible for the identification and development of advanced components and subsystems which will lead to reductions in the fossil fuel consumption of future ships. Over the past several years he has also directed the development and application of total energy computer analysis techniques for the assessment of conventional and advanced shipboard machinery concepts. Mr. Fleming is a 1971 graduate electrical engineer of Virginia Polytechnic Institute and received his MS in electrical engineering from Johns Hopkins University in 1975. Mr. Fleming has authored various technical publications and was the recipient of the Severn Technical Society's “Best Technical Paper of the Year” award in 1
In support of the Navy's efforts to improve the energy usage of future ships and thereby to reduce fleet operating costs, a large scale computer model has been developed by the David Taylor Naval Ship Research and...
In support of the Navy's efforts to improve the energy usage of future ships and thereby to reduce fleet operating costs, a large scale computer model has been developed by the David Taylor Naval Ship Research and Development Center (DTNSRDC) to analyze the performance of shipboard energy systems for applications other than nuclear or oil-fired steam propulsion plants. This paper discusses the applications and utility of this computer program as a performance analysis tool for design of ship machinery systems. The program is a simulation model that performs a complete thermodynamic analysis of a user-specified energy system. It offers considerable flexibility in analyzing a variety of propulsion, electrical, and auxiliary plant configurations through a component building block structure. Component subroutines that model the performance of shipboard equipment such as engines, boilers, generators, and compressors are available from the program library. Component subroutines are selected and linked in the program to model the desired machinery plant functional configurations. The operation of the defined shipboard energy system may then be simulated over a user-specified scenario of temperature, time, and load profiles. The program output furnishes information on component operating characteristics and fuel demands, which allows evaluation of the total system performance.
暂无评论