In the construction of buildings and infrastructures, high resistance materials are used due to current design requirements, concrete being one of the main materials used in the execution of these projects whose cemen...
In the construction of buildings and infrastructures, high resistance materials are used due to current design requirements, concrete being one of the main materials used in the execution of these projects whose cement content is limited to obtaining an economic concrete and of minimum retraction. This limitation requires the use of new additions such as Nano Silica (NS), which due to its nanometric structure is used as a partial replacement for cement, producing an increase in strength in concrete. The present investigation studies the partial replacement of the NS in the cement to determine its behavior in compressive strength, diametric compressive strength, water permeability coefficient. The results indicate that with an addition of 0.225% of NS the compressive strength and splitting tensile strength are increased and the water permeability coefficient decreases, all of them compared to a conventional concrete.
作者:
M CastroJ NavarroG AybarG DuranBachelor
Civil Engineering Program Universidad Peruana de Ciencias Aplicadas Lima Peru Full Professor
Civil Engineering Program Universidad Peruana de Ciencias Aplicadas Lima Peru
This research includes the potential for resistance and the expansion that the soil presents, this evaluation was carried out through CBR tests. The soil cement technique was used to improve the physical and mechanica...
This research includes the potential for resistance and the expansion that the soil presents, this evaluation was carried out through CBR tests. The soil cement technique was used to improve the physical and mechanical characteristics; this process consists in mixing the material with Portland cement type I. That combination forms soil cement 10%, 15% y 20%, which present an increase of the CBR (max: 138.7% and min: 91.9%) achieving a type of extraordinary subgrade to resist the structure of the pavement and a reduction of 7.18% in the expansion of the samples.
This document studies the stabilization of the soil used as a subgrade, by adding locally available materials such as rice husk ash (RHA) and sugarcane bagasse ash (SCBA). These aggregates were added to the soil in su...
This document studies the stabilization of the soil used as a subgrade, by adding locally available materials such as rice husk ash (RHA) and sugarcane bagasse ash (SCBA). These aggregates were added to the soil in substitution by weight between 5%, 7.5% and 10%. By adding these, the expansiveness is reduced while the maximum dry density increases, in addition the tendency of CBR is increasing and then tends to decrease proportionally to the addition of the aforementioned aggregates. This indicates a peak in CBR and expandability. The best result obtained from CBR was 33.75% with the 5% replacement mixtures.
The continuous population increase in recent years requires a greater number of households to be built quickly, with good materials and produced under quality standards that guarantee their manufacturing process. The ...
The continuous population increase in recent years requires a greater number of households to be built quickly, with good materials and produced under quality standards that guarantee their manufacturing process. The prefabricated concrete, produced and supplied by concrete plants, is poured into the different structural elements, the mezzanine slabs being the most careful surfaces in the appearance of fissures; because being horizontal and having larger dimensions, the dimensional changes in the concrete appear more frequently due to the rapid loss of water from the surface of the concrete before setting; which generates superior stresses to the resistant capacity of the concrete at early ages, which affect the durability and reduce the resistance of the structures, causing greater economic expenses in maintenance and repairs. In the present investigation, 5%, 10% and 15% of rice husk ash was used as a replacement for cement and 900g/m3 of polypropylene fiber; The results indicate that as the percentage of rice husk ash increases, there is a reduction in the slump and the crack fissures, and that the resistance to compression and flexion decreases, with respect to the concrete pattern.
The bricks are one of the primary materials required for construction of homes that no used completely when executes all the walls due, the excess purchase, the cutting to be settle, the breaking for their transfer an...
The bricks are one of the primary materials required for construction of homes that no used completely when executes all the walls due, the excess purchase, the cutting to be settle, the breaking for their transfer and its fixed dimensions; this situation requires monitoring on work site the order, cleanliness and accidents. A common practice is these bricks and/or waste are included in the clearing construction before being deposited or eliminated in dumps or sanitary landfills, with their early clogging and shortening them to ther design lifespan. An important alternative to reduce this waste, is to recycle them and reuse them as a concrete component material, due to their high absorption percentage that allows them to keep the water inside of them and then use it in the cement hydration process as internal curing of the concrete. In the present investigation, the effect of crushed clay brick as a replacement for coarse aggregate in concrete processing is studied. The results indicate that with 21 % replacement brick, the plastic contraction decreases, and the compressive strength and flexural strength increase.
This research project seeks to improve soil properties through experimentation with geotechnical purposes. For this, will be used natural volcanic pozzolana in 5%, 10%, 15% and brick dust in 10% giving it a second reu...
This research project seeks to improve soil properties through experimentation with geotechnical purposes. For this, will be used natural volcanic pozzolana in 5%, 10%, 15% and brick dust in 10% giving it a second reuse. The soil improvement will be analyzed with the proposed additions and its influence on the results. It is concluded that the addition improves the behavior of the soil by decreasing its plasticity index, increases the compaction index and improves the geotechnical parameters.
Concrete plants consume 10 billion tons of natural aggregates annually from quarries and gravel plants for produce concrete, this demand requires exploiting natural resources from mountains and rivers producing an eco...
Concrete plants consume 10 billion tons of natural aggregates annually from quarries and gravel plants for produce concrete, this demand requires exploiting natural resources from mountains and rivers producing an ecological imbalance. One solution is to use Palm Oil Clinker (POC), which is eliminated in large quantities in the dumps and rivers without taking advantage of its puzolanic, binding and resistance properties as an aggregate in the concrete; another alternative is to apply rubber from abandoned and discarded tires as waste in landfills or burned, without taking advantage of its performance of improvement in concrete, increasing its resistance to impact and fatigue. Unable to find joint POC and rubber information, this research studies its influence replacing 2.5% rubber (grained and crushed) with 10%, 12.5% and 15% POC in the fine aggregate on traditional concrete; results indicate that with 12.5% of POC as the ideal percentage, the compressive strength, tensile strength and flexural strength rise between 2.16 - 9.54%, so the concrete obtained has a cost of less than 4.09% and has 3.65% less CO2 emission.
Population grow in recent years requires an extension of the current pipeline sanitary system. For this purpose, granular excavation and landfill works are associated with pedestrian traffic congestion. Therefore, it ...
Population grow in recent years requires an extension of the current pipeline sanitary system. For this purpose, granular excavation and landfill works are associated with pedestrian traffic congestion. Therefore, it is necessary to develop an innovative and sustainable alternative to reduce the problems generated during the execution of the conventional process. This research proposes the use of flowable fill due to the multiple advantages offered by this material. On the one hand, it is economical for medium to large trench fill volumes, considering savings in labor (it is done with a small number of workers), in equipment (does not require the rental or purchase of compaction equipment) and in time (the pouring is done by directly pumping the mixture, from the mixing machines to the excavation). On the other hand, being self-compacting and self-leveling decreases the width of the trenches, reducing excavation and filling volumes; which, in turn, incur money savings. Also, this material guarantees work safety, since people are not required inside the excavation and fill in poorly accessible areas without any problem. Dosages were established for ten flowable fill mixtures with cement contents of 50, 60, 70, 80 and 90 kg of cement and a range of admixture from 1.75 to 2.00%; The results indicated that decreasing the fine aggregate - coarse aggregate ratio, the compressive strength of the mixtures increases and the slumps of the mixtures decreases, and the compressive strength increases directly proportional to the cement content.
The concrete is not one hundred percent impermeable since the water that remains inside it causes its corrosion, in the case of reinforced concrete, exposed in an area of marine atmosphere, the sea salt mostly present...
The concrete is not one hundred percent impermeable since the water that remains inside it causes its corrosion, in the case of reinforced concrete, exposed in an area of marine atmosphere, the sea salt mostly present in large particles of the marine spray, produce the reduction of the alkalinity of the concrete causing a rapid corrosion of the steel. There are buildings built in this marine area that have been designed without durability criteria, in which the use of pozzolanic materials is considered, for example, to fill the pores of the cement matrix and thus guarantee its impermeability. In the present study, the effect of clay brick powder (PLA) as a replacement for cement in concrete manufacturing is addressed, evaluating different characteristics of its components. The results indicate that pozzolanic activity and compressive strength increase, slump, voids content and the coefficient of permeability to water decreases.
Tidal flooding that occurs on the northern coast of Semarang City is caused by high rainfall, sea water level rise, and is exacerbated by land subsidence. Handling of tidal flooding is recommended with a polder system...
Tidal flooding that occurs on the northern coast of Semarang City is caused by high rainfall, sea water level rise, and is exacerbated by land subsidence. Handling of tidal flooding is recommended with a polder system. Tidal flood management is made of several alternative retention ponds located in the Banger region so that water can flow in the new retention pond at the pump into the river so that the water goes to the sea. The purpose of this study is to formulate a correlation between catchment area, retention pool and pump capacity. Rainfall-runoff as well as hydraulic parameters were computed and simulate using SWMM software Version 5.1. Based on the analysis results, it clearly shows that, the flood discharge of 24 m3/s can be overcome by integrated pond structure with pump configuration. Alternative 1 retention pool 1 with a storage volume of 15,000 m3, Alternative 2 combined ponds 1 and 2 with a storage volume of 11,400 m3, Alternative 3 combined 3 ponds 1, 2 and 3, storage volume of 14,200 m3, alternative 4, is a combination of the three retention ponds above, with a storage volume of 64,300 m3. The water level in the pond is maintained not to overflow when pumping is carried out with the addition of the pool area, it will further reduce the capacity of the pump that is turned on with certain configurations on the pump operation schedule.
暂无评论