咨询与建议

限定检索结果

文献类型

  • 900 篇 期刊文献
  • 128 篇 会议
  • 6 册 图书

馆藏范围

  • 1,034 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 834 篇 理学
    • 465 篇 物理学
    • 429 篇 数学
    • 188 篇 统计学(可授理学、...
    • 108 篇 化学
    • 100 篇 生物学
    • 76 篇 系统科学
    • 30 篇 地球物理学
    • 22 篇 天文学
  • 597 篇 工学
    • 208 篇 计算机科学与技术...
    • 158 篇 软件工程
    • 100 篇 力学(可授工学、理...
    • 100 篇 材料科学与工程(可...
    • 81 篇 控制科学与工程
    • 78 篇 电子科学与技术(可...
    • 76 篇 动力工程及工程热...
    • 76 篇 电气工程
    • 71 篇 信息与通信工程
    • 70 篇 生物工程
    • 68 篇 化学工程与技术
    • 58 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 25 篇 机械工程
    • 16 篇 仪器科学与技术
    • 14 篇 核科学与技术
  • 57 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 27 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 15 篇 医学
    • 14 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 12 篇 农学
  • 10 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 20 篇 molecular dynami...
  • 18 篇 machine learning
  • 16 篇 stochastic syste...
  • 16 篇 density function...
  • 12 篇 inverse problems
  • 11 篇 eigenvalues and ...
  • 11 篇 microstructure
  • 10 篇 deep neural netw...
  • 10 篇 classical statis...
  • 9 篇 gravitational wa...
  • 9 篇 diffusion
  • 9 篇 artificial neura...
  • 8 篇 sphere packings
  • 8 篇 electronic struc...
  • 8 篇 spheres
  • 8 篇 mean square erro...
  • 7 篇 first-principles...
  • 7 篇 gradient methods
  • 7 篇 turbulence
  • 7 篇 mathematics

机构

  • 131 篇 program in appli...
  • 89 篇 program in appli...
  • 63 篇 department of ch...
  • 63 篇 department of ch...
  • 46 篇 department of ph...
  • 43 篇 program in appli...
  • 40 篇 department of ph...
  • 39 篇 program in appli...
  • 30 篇 beijing institut...
  • 27 篇 princeton instit...
  • 26 篇 program in appli...
  • 23 篇 program in appli...
  • 19 篇 department of ma...
  • 18 篇 applied mathemat...
  • 16 篇 department of ch...
  • 16 篇 princeton instit...
  • 16 篇 princeton center...
  • 15 篇 institute for pl...
  • 15 篇 department of ph...
  • 15 篇 department of ph...

作者

  • 79 篇 salvatore torqua...
  • 65 篇 weinan e.
  • 60 篇 torquato salvato...
  • 43 篇 zhang linfeng
  • 32 篇 singer amit
  • 28 篇 wang han
  • 28 篇 frank h. stillin...
  • 26 篇 jasra ajay
  • 25 篇 s. torquato
  • 24 篇 weinan e
  • 19 篇 car roberto
  • 18 篇 han jiequn
  • 17 篇 emily a. carter
  • 17 篇 bendory tamir
  • 17 篇 kim jaeuk
  • 16 篇 griffith boyce e...
  • 14 篇 ma chao
  • 14 篇 linfeng zhang
  • 13 篇 chen yixiao
  • 13 篇 y. jiao

语言

  • 981 篇 英文
  • 47 篇 其他
  • 4 篇 中文
检索条件"机构=Program In Applied and Computational Mathematics"
1034 条 记 录,以下是231-240 订阅
排序:
Artificial neural network approach for turbulence models: A local framework
arXiv
收藏 引用
arXiv 2021年
作者: Xie, Chenyue Xiong, Xiangming Wang, Jianchun Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen518055 China
A local artificial neural network (LANN) framework is developed for turbulence modeling. The Reynolds-averaged Navier-Stokes (RANS) unclosed terms are reconstructed by artificial neural network (ANN) based on the loca... 详细信息
来源: 评论
A class of dimension-free metrics for the convergence of empirical measures
arXiv
收藏 引用
arXiv 2021年
作者: Han, Jiequn Hu, Ruimeng Long, Jihao Department of Mathematics Princeton University PrincetonNJ08544-1000 United States Department of Mathematics Department of Statistics and Applied Probability University of California Santa BarbaraCA93106-3080 United States The Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544-1000 United States
This paper concerns the convergence of empirical measures in high dimensions. We propose a new class of probability metrics and show that under such metrics, the convergence is free of the curse of dimensionality (CoD... 详细信息
来源: 评论
Representation formulas and pointwise properties for Barron functions
arXiv
收藏 引用
arXiv 2020年
作者: Weinan, E. Wojtowytsch, Stephan Department of Mathematics Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Princeton University Program in Applied and Computational Mathematics 205 Fine Hall - Washington Road PrincetonNJ08544 United States
We study the natural function space for infinitely wide two-layer neural networks with ReLU activation (Barron space) and establish different representation formulae. In two cases, we describe the space explicitly up ... 详细信息
来源: 评论
Disordered Heterogeneous Universe: Galaxy Distribution and Clustering across Length Scales
收藏 引用
Physical Review X 2023年 第1期13卷 011038-011038页
作者: Oliver H. E. Philcox Salvatore Torquato Department of Astrophysical Sciences Princeton University Princeton New Jersey 08540 USA School of Natural Sciences Institute for Advanced Study 1 Einstein Drive Princeton New Jersey 08540 USA Center for Theoretical Physics Department of Physics Columbia University New York New York 10027 USA Simons Foundation New York New York 10010 USA Department of Chemistry Department of Physics Princeton Materials Institute and Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08540 USA
The studies of disordered heterogeneous media and galaxy cosmology share a common goal: analyzing the disordered distribution of particles and/or building blocks at microscales to predict physical properties of the me... 详细信息
来源: 评论
A deep potential model with long-range electrostatic interactions
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Linfeng Wang, Han Muniz, Maria Carolina Panagiotopoulos, Athanassios Z. Car, Roberto Weinan, E. DP Technology Beijing China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Department of Chemical and Biological Engineering Princeton University PrincetonNJ08544 United States Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States School of Mathematical Sciences Peking University Beijing100871 China AI for Science Institute Beijing China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States
Machine learning models for the potential energy of multi-atomic systems, such as the deep potential (DP) model, make possible molecular simulations with the accuracy of quantum mechanical density functional theory, a... 详细信息
来源: 评论
Deep potentials for materials science
材料展望(英文)
收藏 引用
材料展望(英文) 2022年 第2期 89-115页
作者: Tongqi Wen Linfeng Zhang Han Wang Weinan E David J Srolovitz Department of Mechanical Engineering The University of Hong KongHong KongHong Kong Special Administrative Region of China DP Technology BeijingPeople's Republic of China AI for Science Institute BeijingPeople's Republic of China Laboratory of Computational Physics Institute of Applied Physics and Computational MathematicsBeijingPeople's Republic of China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingPeople's Republic of China AI for Science Institute BeijingPeople's Republic of China School of Mathematical Sciences Peking UniversityBeijingPeople's Republic of China Department of Mathematics and Program in Applied and Computational Mathematics Princeton UniversityPrincetonNJUnited States of America Department of Mechanical Engineering The University of Hong KongHong KongHong Kong Special Administrative Region of China International Digital Economy Academy(IDEA) ShenzhenPeople's Republic of China
To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and be... 详细信息
来源: 评论
The quenching-activation behavior of the gradient descent dynamics for two-layer neural network models
arXiv
收藏 引用
arXiv 2020年
作者: Ma, Chao Wu, Lei Weinan, E. Department of Mathematics Princeton University Program in Applied and Computational Mathematics Princeton University Institute of Big Data Research
A numerical and phenomenological study of the gradient descent (GD) algorithm for training two-layer neural network models is carried out for different parameter regimes when the target function can be accurately appr... 详细信息
来源: 评论
ZERO KINETIC UNDERCOOLING LIMIT IN THE SUPERCOOLED STEFAN PROBLEM
arXiv
收藏 引用
arXiv 2020年
作者: Baker, Graeme Shkolnikov, Mykhaylo Program in Applied & Computational Mathematics Princeton University PrincetonNJ08544 United States ORFE Department Bendheim Center for Finance Program in Applied & Computational Mathematics Princeton University PrincetonNJ08544 United States
We study the solutions of the one-phase supercooled Stefan problem with kinetic undercooling, which describes the freezing of a supercooled liquid, in one spatial dimension. Assuming that the initial temperature lies ... 详细信息
来源: 评论
On the discretization of Laplace's equation with Neumann boundary conditions on polygonal domains
arXiv
收藏 引用
arXiv 2020年
作者: Hoskins, Jeremy Rachh, Manas Applied Mathematics Program Yale University United States Center for Computational Mathematics Flatiron Institute United States
In the present paper we describe a class of algorithms for the solution of Laplace's equation on polygonal domains with Neumann boundary conditions. It is well known that in such cases the solutions have singulari... 详细信息
来源: 评论
An Immersed Interface Method for Incompressible Flows and Geometries with Sharp Features
arXiv
收藏 引用
arXiv 2024年
作者: Facci, Michael J. Kolahdouz, Ebrahim M. Griffith, Boyce E. Department of Mathematics University of North Carolina Chapel HillNC United States Flatiron Institute Simons Foundation New YorkNY United States Department of Biomedical Engineering University of North Carolina Chapel HillNC United States Carolina Center for Interdisciplinary Applied Mathematics University of North Carolina Chapel HillNC United States Computational Medicine Program University of North Carolina School of Medicine Chapel HillNC United States McAllister Heart Institute University of North Carolina School of Medicine Chapel HillNC United States
The immersed interface method (IIM) for models of fluid flow and fluid-structure interaction imposes jump conditions that capture stress discontinuities generated by forces that are concentrated along immersed boundar... 详细信息
来源: 评论