咨询与建议

限定检索结果

文献类型

  • 897 篇 期刊文献
  • 126 篇 会议
  • 6 册 图书

馆藏范围

  • 1,029 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 834 篇 理学
    • 464 篇 物理学
    • 429 篇 数学
    • 189 篇 统计学(可授理学、...
    • 109 篇 化学
    • 103 篇 生物学
    • 76 篇 系统科学
    • 30 篇 地球物理学
    • 22 篇 天文学
  • 595 篇 工学
    • 206 篇 计算机科学与技术...
    • 156 篇 软件工程
    • 101 篇 材料科学与工程(可...
    • 100 篇 力学(可授工学、理...
    • 81 篇 控制科学与工程
    • 77 篇 电子科学与技术(可...
    • 76 篇 动力工程及工程热...
    • 75 篇 电气工程
    • 71 篇 信息与通信工程
    • 70 篇 生物工程
    • 68 篇 化学工程与技术
    • 58 篇 生物医学工程(可授...
    • 54 篇 光学工程
    • 25 篇 机械工程
    • 16 篇 仪器科学与技术
    • 14 篇 核科学与技术
  • 58 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 27 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 16 篇 医学
    • 14 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 15 篇 农学
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 10 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 20 篇 molecular dynami...
  • 18 篇 machine learning
  • 16 篇 stochastic syste...
  • 16 篇 density function...
  • 12 篇 inverse problems
  • 11 篇 eigenvalues and ...
  • 11 篇 microstructure
  • 10 篇 deep neural netw...
  • 10 篇 classical statis...
  • 9 篇 gravitational wa...
  • 9 篇 diffusion
  • 9 篇 artificial neura...
  • 8 篇 sphere packings
  • 8 篇 electronic struc...
  • 8 篇 spheres
  • 8 篇 mean square erro...
  • 7 篇 first-principles...
  • 7 篇 gradient methods
  • 7 篇 turbulence
  • 7 篇 mathematics

机构

  • 133 篇 program in appli...
  • 89 篇 program in appli...
  • 64 篇 department of ch...
  • 63 篇 department of ch...
  • 47 篇 department of ph...
  • 43 篇 program in appli...
  • 40 篇 program in appli...
  • 40 篇 department of ph...
  • 30 篇 beijing institut...
  • 27 篇 princeton instit...
  • 26 篇 program in appli...
  • 23 篇 program in appli...
  • 19 篇 department of ma...
  • 17 篇 applied mathemat...
  • 17 篇 princeton instit...
  • 16 篇 department of ch...
  • 16 篇 princeton center...
  • 15 篇 department of ph...
  • 15 篇 department of ph...
  • 15 篇 program in appli...

作者

  • 79 篇 salvatore torqua...
  • 65 篇 weinan e.
  • 60 篇 torquato salvato...
  • 43 篇 zhang linfeng
  • 33 篇 singer amit
  • 28 篇 wang han
  • 28 篇 frank h. stillin...
  • 25 篇 s. torquato
  • 25 篇 jasra ajay
  • 24 篇 weinan e
  • 20 篇 car roberto
  • 18 篇 emily a. carter
  • 18 篇 han jiequn
  • 17 篇 bendory tamir
  • 17 篇 kim jaeuk
  • 16 篇 griffith boyce e...
  • 14 篇 ma chao
  • 14 篇 linfeng zhang
  • 13 篇 chen yixiao
  • 13 篇 y. jiao

语言

  • 978 篇 英文
  • 47 篇 其他
  • 4 篇 中文
检索条件"机构=Program for Applied and Computational Mathematics"
1029 条 记 录,以下是271-280 订阅
排序:
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems  18
End-to-end symmetry preserving inter-atomic potential energy...
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Linfeng Zhang Jiequn Han Han Wang Wissam A. Saidi Roberto Car E. Weinan Program in Applied and Computational Mathematics Princeton University Institute of Applied Physics and Computational Mathematics China and CAEP Software Center for High Performance Numerical Simulation China Department of Mechanical Engineering and Materials Science University of Pittsburgh Program in Applied and Computational Mathematics Princeton University and Department of Chemistry and Department of Physics Princeton University and Princeton Institute for the Science and Technology of Materials Princeton University Program in Applied and Computational Mathematics Princeton University and Department of Mathematics Princeton University and Beijing Institute of Big Data Research China
Machine learning models are changing the paradigm of molecular modeling, which is a fundamental tool for material science, chemistry, and computational biology. Of particular interest is the inter-atomic potential ene...
来源: 评论
Efficient Numerical Algorithm for Large-Scale Damped Natural Gradient Descent
arXiv
收藏 引用
arXiv 2023年
作者: Chen, Yixiao Xie, Hao Wang, Han Program in Applied and Computational Mathematics Princeton University United States Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics
We propose a new algorithm for efficiently solving the damped Fisher matrix in large-scale scenarios where the number of parameters significantly exceeds the number of available samples. This problem is fundamental fo... 详细信息
来源: 评论
Multiscale simulations in simple metals: A density-functional-based methodology
收藏 引用
Physical Review B 2005年 第9期71卷 094101-094101页
作者: Nicholas Choly Gang Lu Weinan E Efthimios Kaxiras Division of Engineering and Applied Sciences Harvard University Cambridge Massachusetts 02138 USA Department of Mathematics and Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA
We present a formalism for coupling a density-functional-theory-based quantum simulation to a classical simulation for the treatment of simple metallic systems. The formalism is applicable to multiscale simulations in...
来源: 评论
Community Detection and Stochastic Block Models
arXiv
收藏 引用
arXiv 2017年
作者: Abbe, Emmanuel Program in Applied and Computational Mathematics Department of Electrical Engineering Princeton University Princeton United States
The stochastic block model (SBM) is a random graph model with different group of vertices connecting differently. It is widely employed as a canonical model to study clustering and community detection, and provides a ... 详细信息
来源: 评论
A Comparative Analysis of Optimization and Generalization Properties of Two-layer Neural Network and Random Feature Models Under Gradient Descent Dynamics
arXiv
收藏 引用
arXiv 2019年
作者: Weinan, E. Ma, Chao Wu, Lei Department of Mathematics Princeton University Program in Applied and Computational Mathematics Princeton University Beijing Institute of Big Data Research
A fairly comprehensive analysis is presented for the gradient descent dynamics for training two-layer neural network models in the situation when the parameters in both layers are updated. General initialization schem... 详细信息
来源: 评论
A Priori Estimates of the Population Risk for Residual Networks
arXiv
收藏 引用
arXiv 2019年
作者: Weinan, E. Ma, Chao Wang, Qingcan Department of Mathematics Princeton University Program in Applied and Computational Mathematics Princeton University Beijing Institute of Big Data Research
Optimal a priori estimates are derived for the population risk, also known as the generalization error, of a regularized residual network model. An important part of the regularized model is the usage of a new path no... 详细信息
来源: 评论
Machine learning from a continuous viewpoint
arXiv
收藏 引用
arXiv 2019年
作者: Weinan, E. Ma, Chao Wu, Lei Department of Mathematics Princeton University Program in Applied and Computational Mathematics Princeton University Beijing Institute of Big Data Research
We present a continuous formulation of machine learning, as a problem in the calculus of variations and differential-integral equations, very much in the spirit of classical numerical analysis and statistical physics.... 详细信息
来源: 评论
LATTICE-VALUED BOTTLENECK DUALITY
arXiv
收藏 引用
arXiv 2024年
作者: Ghrist, Robert Gould, Julian Lopez, Miguel Department of Mathematics Department of Electrical & Systems Engineering and Program in Applied Mathematics & Computational Science University of Pennsylvania United States
This note reformulates certain classical combinatorial duality theorems in the context of order lattices. For source-target networks, we generalize bottleneck path-cut and flow-cut duality results to edges with capaci... 详细信息
来源: 评论
Probabilistic Theory of Mean Field Games with Applications II  1
收藏 引用
丛书名: Probability Theory and Stochastic Modelling
1000年
作者: René Carmona François Delarue
Together, both Volume I and Volume II will greatly benefit mathematical graduate students and researchers interested in mean field games. The authors provide a detailed road map through the book allowing different acc... 详细信息
来源: 评论
Analysis of the gradient descent algorithm for a deep neural network model with skip-connections
arXiv
收藏 引用
arXiv 2019年
作者: Weinan, E. Ma, Chao Wang, Qingcan Wu, Lei Department of Mathematics Princeton University Program in Applied and Computational Mathematics Princeton University Beijing Institute of Big Data Research
The behavior of the gradient descent (GD) algorithm is analyzed for a deep neural network model with skip-connections. It is proved that in the over-parametrized regime, for a suitable initialization, with high probab... 详细信息
来源: 评论