We derive an analytic form of the Wang-Govind-Carter (WGC) [Wang et al., Phys. Rev. B 60, 16350 (1999)] kinetic energy density functional (KEDF) with the density-dependent response kernel. A real-space aperiodic impl...
We derive an analytic form of the Wang-Govind-Carter (WGC) [Wang et al., Phys. Rev. B 60, 16350 (1999)] kinetic energy density functional (KEDF) with the density-dependent response kernel. A real-space aperiodic implementation of the WGC KEDF is then described and used in linear scaling orbital-free density functional theory (OF-DFT) calculations.
First-principles density functional theory calculations are performed to examine five postulated diffusion mechanisms for Ni in NiAl: next-nearest-neighbor (NNN) jumps, the triple defect mechanism, and three variants ...
First-principles density functional theory calculations are performed to examine five postulated diffusion mechanisms for Ni in NiAl: next-nearest-neighbor (NNN) jumps, the triple defect mechanism, and three variants of the six-jump cycle. In contrast to most previous theoretical work, which employed empirical interatomic potentials, we provide a more accurate nonempirical description of the mechanisms. For each pathway, we calculate the activation energy and the pre-exponential factor for the diffusion constant. Although our quantum mechanics calculations are performed at 0 K, we show that it is critical to include the effect of temperature on the pre-exponential factor. We predict that the triple defect mechanism and [110] six-jump cycle both are likely contributors to Ni diffusion in NiAl since their activation energies and pre-exponential factors are in very good agreement with experimental data. Although the activation energy and pre-exponential factor of NNN jumps agree well with experiment, experimental evidence suggests that this is not a dominant contributor to Ni diffusion. Lastly, the activation energies of the [100] bent and straight six-jump cycles are 1 eV higher than the experimental value, allowing us to exclude both [100] cycle mechanisms.
In this paper we present a numerical study that investigates the relationship between the parameter q, used in the design of the MinMax controller, and the conditioning of the approximate algebraic Riccati equations, ...
详细信息
ISBN:
(纸本)9781424431236
In this paper we present a numerical study that investigates the relationship between the parameter q, used in the design of the MinMax controller, and the conditioning of the approximate algebraic Riccati equations, the sensitivity of the eigenvalues of I-¿ 2 P¿ to ¿ as well as the effect of q on the stability radia and the stability margin of the system. In order to guarantee accurate numerical solutions to the approximate Riccati equations, the Riccati equations must remain well-conditioned for the values of ¿ that are considered. This condition number reflects the combined sensitivity of the Riccati equations to the system inputs A, B, R, C and ¿. In addition, we also consider the sensitivity of the eigenvalues of I-¿ 2 P¿ to ¿. We study the possibility of these sensitivities serving as an indication of the largest value of ¿ for which I-¿ 2 P¿ remains positive definite. This sensitivity could also serve as an indication of the accuracy of the computation of I-¿ 2 P¿. Lastly, in order to design efficient low order controllers, it is important to ensure the robustness of the design. Stability radius and stability margin serve as measures of the robustness of the controller. A one-dimensional nonlinear cable mass system is considered to illustrate these ideas and numerical results are presented.
We present a multiscale modeling approach that can simulate multimillion atoms effectively via density-functional theory. The method is based on the framework of the quasicontinuum (QC) approach with orbital-free dens...
We present a multiscale modeling approach that can simulate multimillion atoms effectively via density-functional theory. The method is based on the framework of the quasicontinuum (QC) approach with orbital-free density-functional theory (OFDFT) as its sole energetics formulation. The local QC part is formulated by the Cauchy-Born hypothesis with OFDFT calculations for strain energy and stress. The nonlocal QC part is treated by an OFDFT-based embedding approach, which couples OFDFT nonlocal atoms to local region atoms. The method—QCDFT—is applied to a nanoindentation study of an Al thin film, and the results are compared to a conventional QC approach. The results suggest that QCDFT represents a new direction for the quantum simulation of materials at length scales that are relevant to experiments.
We show that edge stresses introduce intrinsic ripples in freestanding graphene sheets even in the absence of any thermal effects. Compressive edge stresses along zigzag and armchair edges of the sheet cause out-of-pl...
详细信息
We show that edge stresses introduce intrinsic ripples in freestanding graphene sheets even in the absence of any thermal effects. Compressive edge stresses along zigzag and armchair edges of the sheet cause out-of-plane warping to attain several degenerate mode shapes. Based on elastic plate theory, we identify scaling laws for the amplitude and penetration depth of edge ripples as a function of wavelength. We also demonstrate that edge stresses can lead to twisting and scrolling of nanoribbons as seen in experiments. Our results underscore the importance of accounting for edge stresses in thermal theories and electronic structure calculations for freestanding graphene sheets.
The authors consider the simplest quantum mechanics model of solids, the tight binding model, and prove that in the continuum limit, the energy of tight binding model converges to that of the continuum elasticity mode...
详细信息
The authors consider the simplest quantum mechanics model of solids, the tight binding model, and prove that in the continuum limit, the energy of tight binding model converges to that of the continuum elasticity model obtained using Cauchy-Born rule. The technique in this paper is based mainly on spectral perturbation theory for large matrices.
We show that under tension a classical many-body system with only isotropic pair interactions in a crystalline state can, counterintuitively, have a negative Poisson’s ratio, or auxetic behavior. We derive the condit...
详细信息
We show that under tension a classical many-body system with only isotropic pair interactions in a crystalline state can, counterintuitively, have a negative Poisson’s ratio, or auxetic behavior. We derive the conditions under which the triangular lattice in two dimensions and lattices with cubic symmetry in three dimensions exhibit a negative Poisson’s ratio. In the former case, the simple Lennard-Jones potential can give rise to auxetic behavior. In the latter case, a negative Poisson’s ratio can be exhibited even when the material is constrained to be elastically isotropic.
We consider a basic model for two-hop transmissions of two information flows which interfere with each other. In this model, two sources simultaneously transmit to two relays (in the first hop), which then simultaneou...
详细信息
We consider a basic model for two-hop transmissions of two information flows which interfere with each other. In this model, two sources simultaneously transmit to two relays (in the first hop), which then simultaneously transmit to two destinations (in the second hop). While the transmission during the first hop is essentially the transmission over a classical interference channel, the transmission in the second hop enjoys an interesting advantage. Specifically, as a byproduct of the Han-Kobayashi transmission scheme applied to the first hop, each of the relays (in the second hop) has access to some of the data that is intended to the other destination, in addition to its own data. As recently observed by Simeone et al., this opens the door to cooperation between the relays. In this paper, we observe that the cooperation can take the form of distributed MIMO broadcast, thus greatly enhancing its effectiveness at high SNR. However, since each relay is only aware of part of the data beyond its own, full cooperation is not possible. We propose several approaches that combine MIMO broadcast strategies (including ldquodirty paperrdquo) with standard non-cooperative strategies for the interference channel. Numerical results are provided, which indicate that our approaches provide substantial benefits at high SNR.
Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by |x1|2p+|x2|2...
详细信息
Almost all studies of the densest particle packings consider convex particles. Here, we provide exact constructions for the densest known two-dimensional packings of superdisks whose shapes are defined by |x1|2p+|x2|2p≤1 and thus contain a large family of both convex (p≥0.5) and concave (0
暂无评论