咨询与建议

限定检索结果

文献类型

  • 105 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 108 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 理学
    • 45 篇 数学
    • 39 篇 统计学(可授理学、...
    • 30 篇 物理学
    • 19 篇 生物学
    • 15 篇 系统科学
    • 12 篇 化学
    • 5 篇 天文学
    • 5 篇 地质学
    • 4 篇 地球物理学
  • 73 篇 工学
    • 21 篇 计算机科学与技术...
    • 19 篇 软件工程
    • 13 篇 控制科学与工程
    • 10 篇 电子科学与技术(可...
    • 10 篇 生物工程
    • 8 篇 电气工程
    • 8 篇 核科学与技术
    • 6 篇 材料科学与工程(可...
    • 4 篇 力学(可授工学、理...
    • 4 篇 动力工程及工程热...
    • 4 篇 信息与通信工程
    • 3 篇 化学工程与技术
    • 3 篇 航空宇航科学与技...
    • 3 篇 生物医学工程(可授...
  • 10 篇 管理学
    • 4 篇 工商管理
    • 4 篇 图书情报与档案管...
    • 3 篇 管理科学与工程(可...
  • 7 篇 医学
    • 6 篇 基础医学(可授医学...
    • 6 篇 临床医学
  • 6 篇 农学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学

主题

  • 9 篇 gravitational wa...
  • 5 篇 diffusion
  • 5 篇 mean square erro...
  • 5 篇 stochastic syste...
  • 5 篇 gravitational wa...
  • 4 篇 molecular dynami...
  • 4 篇 gravitational wa...
  • 3 篇 inverse problems
  • 3 篇 machine learning
  • 2 篇 markov chains
  • 2 篇 deep neural netw...
  • 2 篇 ordinary differe...
  • 2 篇 ferroelectricity
  • 2 篇 machine learning...
  • 2 篇 deep potential
  • 2 篇 neural network
  • 2 篇 atomistic simula...
  • 2 篇 astrophysical st...
  • 2 篇 density function...
  • 1 篇 eigenvalues and ...

机构

  • 16 篇 applied mathemat...
  • 14 篇 institute for pl...
  • 14 篇 university of so...
  • 14 篇 indian institute...
  • 12 篇 department of as...
  • 12 篇 department of ph...
  • 12 篇 université libre...
  • 11 篇 infn sezione di ...
  • 11 篇 national tsing h...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 department of ph...
  • 11 篇 institute for nu...
  • 11 篇 scuola di ingegn...
  • 11 篇 advanced technol...
  • 11 篇 physik-institut ...
  • 11 篇 king’s college l...
  • 11 篇 department of ph...
  • 11 篇 kamioka branch n...
  • 11 篇 the university o...

作者

  • 24 篇 jasra ajay
  • 14 篇 weinan e.
  • 11 篇 r. takahashi
  • 11 篇 j. c. bayley
  • 11 篇 t. m. evans
  • 11 篇 k. komori
  • 11 篇 t. kajita
  • 11 篇 f. hellman
  • 11 篇 s. eguchi
  • 11 篇 k. ioka
  • 11 篇 m. kinley-hanlon
  • 11 篇 c. frederick
  • 11 篇 e. j. son
  • 11 篇 l. m. daneshgara...
  • 11 篇 t. tsuzuki
  • 11 篇 t. mcrae
  • 11 篇 a. parisi
  • 11 篇 t. sawada
  • 11 篇 s. rowan
  • 11 篇 s. m. aronson

语言

  • 92 篇 英文
  • 16 篇 其他
检索条件"机构=Program in Applied Mathematical and Computational Science"
108 条 记 录,以下是41-50 订阅
排序:
Deep potentials for materials science
材料展望(英文)
收藏 引用
材料展望(英文) 2022年 第2期 89-115页
作者: Tongqi Wen Linfeng Zhang Han Wang Weinan E David J Srolovitz Department of Mechanical Engineering The University of Hong KongHong KongHong Kong Special Administrative Region of China DP Technology BeijingPeople's Republic of China AI for Science Institute BeijingPeople's Republic of China Laboratory of Computational Physics Institute of Applied Physics and Computational MathematicsBeijingPeople's Republic of China HEDPS CAPTCollege of EngineeringPeking UniversityBeijingPeople's Republic of China AI for Science Institute BeijingPeople's Republic of China School of Mathematical Sciences Peking UniversityBeijingPeople's Republic of China Department of Mathematics and Program in Applied and Computational Mathematics Princeton UniversityPrincetonNJUnited States of America Department of Mechanical Engineering The University of Hong KongHong KongHong Kong Special Administrative Region of China International Digital Economy Academy(IDEA) ShenzhenPeople's Republic of China
To fill the gap between accurate(and expensive)ab initio calculations and efficient atomistic simulations based on empirical interatomic potentials,a new class of descriptions of atomic interactions has emerged and be... 详细信息
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI  41
Position: Bayesian Deep Learning is Needed in the Age of Lar...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
A deep potential model with long-range electrostatic interactions
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Linfeng Wang, Han Muniz, Maria Carolina Panagiotopoulos, Athanassios Z. Car, Roberto Weinan, E. DP Technology Beijing China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Fenghao East Road 2 Beijing100094 China HEDPS CAPT College of Engineering Peking University Beijing100871 China Department of Chemical and Biological Engineering Princeton University PrincetonNJ08544 United States Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States School of Mathematical Sciences Peking University Beijing100871 China AI for Science Institute Beijing China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States
Machine learning models for the potential energy of multi-atomic systems, such as the deep potential (DP) model, make possible molecular simulations with the accuracy of quantum mechanical density functional theory, a... 详细信息
来源: 评论
DeePN2: A deep learning-based non-Newtonian hydrodynamic model
arXiv
收藏 引用
arXiv 2021年
作者: Fang, Lidong Ge, Pei Zhang, Lei Weinan, E. Lei, Huan Department of Computational Mathematics Science and Engineering Michigan State University MI48824 United States School of Mathematical Sciences Institute of Natural Sciences and MOE-LSC Shanghai Jiao Tong University 800 Dongchuan Road Shanghai200240 China Center for Machine Learning Research School of Mathematical Sciences Peking University Beijing100871 China AI for Science Institute Beijing100080 China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University NJ08544 United States Department of Statistics and Probability Michigan State University MI48824 United States
A long standing problem in the modeling of non-Newtonian hydrodynamics of polymeric flows is the availability of reliable and interpretable hydrodynamic models that faithfully encode the underlying micro-scale polymer... 详细信息
来源: 评论
Tuning cooperative behavior in games with nonlinear opinion dynamics
arXiv
收藏 引用
arXiv 2021年
作者: Park, Shinkyu Bizyaeva, Anastasia Kawakatsu, Mari Franci, Alessio Leonard, Naomi Ehrich Computer Electrical and Mathematical Science and Engineering Division Thuwal23955-6900 Saudi Arabia Department of Mechanical and Aerospace Engineering Princeton University PrincetonNJ08544 United States Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Mathematics Department National Autonomous University of Mexico Mexico City04510 Mexico
We examine the tuning of cooperative behavior in repeated multi-agent games using an analytically tractable, continuous-time, nonlinear model of opinion dynamics. Each modeled agent updates its real-valued opinion abo... 详细信息
来源: 评论
International Workshop on Applications of Probability and Statistics to Biology,July 11-13,2019--In Honor of Professor Minping Qian’s 80th Birthday
收藏 引用
Quantitative Biology 2020年 第2期8卷 177-186页
作者: Minghua Deng Jianfeng Feng Hong Qian Lin Wan Fengzhu Sun Center for Quantitative Biology Peking UniversityBeijing 100871China LMAM Center for Statistical ScienceSchool of Mathematical SciencesPeking UniversityBeijing 100871China Institute of Science and Technology for Brain-inspired Intelligence Fudan UniversityShanghai 200433China School of Mathematical Sciences Fudan UniversityShanghai 200433China Centre for Computational Systems Biology Fudan UniversityShanghai 200433China Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence at Fudan University Ministry of EducationShanghai 200433China Department of Computer Science University of WarwickCoventryCV47ALUnited Kingdom Department of Applied Mathematics University of WashingtonSeattleWA 98195USA NCMIS Academy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing 100190China School of Mathematical Sciences University of Chinese Academy of SciencesBeijing 100049China Quantitative and Computational Biology Program University of Southern CaliforniaLos AngelesCA 90089USA
The International Workshop on Applications of Probability and Statistics to Biology(APSB)was successfully held in Shanghai,China,July 11-13,*** workshop was hosted by the Institute of science and Technology for Brain-... 详细信息
来源: 评论
Widely Tunable Berry Curvature in the Magnetic Semimetal Cr1+δTe2
收藏 引用
Advanced Materials 2023年 第12期35卷 2207121-2207121页
作者: Fujisawa, Yuita Pardo-Almanza, Markel Hsu, Chia-Hsiu Mohamed, Atwa Yamagami, Kohei Krishnadas, Anjana Chang, Guoqing Chuang, Feng-Chuan Khoo, Khoong Hong Zang, Jiadong Soumyanarayanan, Anjan Okada, Yoshinori Okinawa904-0495 Japan Department of Physics National Sun Yat-sen University Kaohsiung80424 Taiwan Physics Division National Center for Theoretical Sciences Taipei10617 Taiwan Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore637371 Singapore Center for Theoretical and Computational Physics National Sun Yat-sen University Kaohsiung80424 Taiwan Institute of High Performance Computing Agency for Science Technology and Research Singapore138632 Singapore Department of Physics and Astronomy University of New Hampshire DurhamNH 03824 United States Materials Science Program University of New Hampshire DurhamNH 03824 United States Department of Physics National University of Singapore Singapore117551 Singapore Institute of Materials Research and Engineering Agency for Science Technology and Research Singapore138634 Singapore
Magnetic semimetals have increasingly emerged as lucrative platforms hosting spin-based topological phenomena in real and momentum spaces. Cr1+δTe2 is a self-intercalated magnetic transition metal dichalcogenide (TMD... 详细信息
来源: 评论
An optimal algorithm for strict circular seriation
arXiv
收藏 引用
arXiv 2021年
作者: Armstrong, Santiago Guzmán, Cristóbal Long, Carlos A. Sing Institute for Mathematical and Computational Engineering Pontificia Universidad Católica de Chile Santiago Chile Anid - Millennium Science Initiative Program Millennium Nucleus Center for the Discovery of Structures in Complex Data Santiago Chile Department of Applied Mathematics University of Twente Netherlands Institute for Biological and Medical Engineering Pontificia Universidad Católica de Chile Santiago Chile
We study the problem of circular seriation, where we are given a matrix of pairwise dissimilarities between n objects, and the goal is to find a circular order of the objects in a manner that is consistent with their ... 详细信息
来源: 评论
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论