Burlington County College (BCC) is implementing the findings of an institution-level reform of its Engineering Technology programs in order to create meaningful job opportunities for displaced and incumbent workers, w...
详细信息
The mathematical modelling of growing filamentous cells has been approached in a variety of ways ranging from simple geometric to biomechanically based models using exact, nonlinear, elasticity theory for shells and m...
详细信息
The theory of the focusing NLS equation under periodic boundary conditions, together with the Floquet spectral theory of its associated Zakharov-Shabat liner operator L, is developed in sufficient detail for later use...
详细信息
The theory of the focusing NLS equation under periodic boundary conditions, together with the Floquet spectral theory of its associated Zakharov-Shabat liner operator L, is developed in sufficient detail for later use in studies of perturbations of the NLS equation. ''Counting lemmas'' for the non-selfadjoint operator L, are established which control its spectrum and show that all of its eccentricities are finite in number and must reside within a finite disc D in the complex eigenvalue plane. The radius of the disc D is controlled by the H-1 norm of the potential q. For this integrable NLS Hamiltonian system, unstable tori are identified, and Backlund transformations are then used to construct global representations of their stable and unstable manifolds - ''whiskered tori'' for the NLS pde. The Floquet discriminant DELTA(lambda;q) used to introduce a natural sequence of NLS constants of motion, [F(j)(q) = DELTA(lambda = lambda(j)c(q);q), where lambda(j)c denotes the j(th) critical point of the Floquet discriminant DELTA(lambda)]. A Taylor series expansion of the constants F(j)(q), with explicit representations of the first and second variations, is then used to study neighborhoods of the whiskered tori. In particular, critical tori with hyperbolic structure are identified through the first and second variations of F(j)(q), which themselves are expressed in terms of quadratic products of eigenfunctions of L. The second variation permits identification, within the disc D, of important bifurcations m the spectral configurations of the operator L. The constant F(j)(q), as the height of the Floquet discriminant over the critical point lambda(j)c, admits a natural interpretation as a Morse function for NLS isospectral level sets. This Morse interpretation is studied in some detail. It is valid globally for the infinite tail, {F(j)(q)}\j\>N, which is associated with critical points outside the disc D. Within this disc, the interpretation is only valid locally, with the s
In secure multi-party computations (SMC), parties wish to compute a function on their private data without revealing more information about their data than what the function reveals. In this paper, we investigate two ...
详细信息
The numerical integration of a wide class of Hamiltonian partial differential equations by standard symplectic schemes is discussed, with a consistent, Hamiltonian approach. We discretize the Hamiltonian and the Poiss...
详细信息
The numerical integration of a wide class of Hamiltonian partial differential equations by standard symplectic schemes is discussed, with a consistent, Hamiltonian approach. We discretize the Hamiltonian and the Poisson structure separately, then form the the resulting ODE's. The stability, accuracy, and dispersion of different explicit splitting methods are analyzed, and we give the circumstances under which die best results can be obtained;in particular, when the Hamiltonian can be split into linear and nonlinear terms. Many different treatments and examples are compared.
Disordered hyperuniform many-particle systems are recently discovered exotic states of matter, characterized by the complete suppression of normalized infinite-wavelength density fluctuations, as in perfect crystals, ...
详细信息
Disordered hyperuniform many-particle systems are recently discovered exotic states of matter, characterized by the complete suppression of normalized infinite-wavelength density fluctuations, as in perfect crystals, while lacking conventional long-range order, as in liquids and glasses. In this work, we begin a program to quantify the structural properties of nonhyperuniform and hyperuniform networks. In particular, large two-dimensional (2D) Voronoi networks (graphs) containing approximately 10,000 nodes are created from a variety of different point configurations, including the antihyperuniform hyperplane intersection process (HIP), nonhyperuniform Poisson process, nonhyperuniform random sequential addition (RSA) saturated packing, and both non-stealthy and stealthy hyperuniform point processes. We carry out an extensive study of the Voronoi-cell area distribution of each of the networks by determining multiple metrics that characterize the distribution, including their average areas and corresponding variances as well as higher-order cumulants (i.e., skewness γ1 and excess kurtosis γ2). We show that the HIP distribution is far from Gaussian, as evidenced by a high skewness (γ1=3.16) and large positive excess kurtosis (γ2=16.2). The Poisson (with γ1=1.07 and γ2=1.79) and non-stealthy hyperuniform (with γ1=0.257 and γ2=0.0217) distributions are Gaussian-like distributions, since they exhibit a small but positive skewness and excess kurtosis. The RSA (with γ1=0.450 and γ2=−0.0384) and the highest stealthy hyperuniform distributions (with γ1=0.0272 and γ2=−0.0626) are also non-Gaussian because of their low skewness and negative excess kurtosis, which is diametrically opposite of the non-Gaussian behavior of the HIP. The fact that the cell-area distributions of large, finite-sized RSA and stealthy hyperuniform networks (e.g., with N≈10,000 nodes) are narrower, have larger peaks, and smaller tails than a Gaussian distribution implies that in the thermodynamic limit th
Considering the coupled nonlinear Schr¨odinger system with multiply components, we provide a novel framework for constructing energy-preserving algorithms. In detail, based on the high order compact finite differ...
详细信息
Considering the coupled nonlinear Schr¨odinger system with multiply components, we provide a novel framework for constructing energy-preserving algorithms. In detail, based on the high order compact finite difference method, Fourier pseudospectral method and wavelet collocation method for spatial discretizations, a series of high accurate conservative algorithms are presented. The proposed algorithms can preserve the corresponding discrete charge and energy conservation laws exactly, which would guarantee their numerical stabilities during long time ***, several analogous multi-symplectic algorithms are constructed as comparison. Numerical experiments for the unstable plane waves will show the advantages of the proposed algorithms over long time and verify the theoretical analysis.
Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. We studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a...
Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. We studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: we reached about 5 x 10(4) simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. We varied the gravitational constant, and we found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). We studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths. The heavy propagator geodesic appeared to be much smoother, so that the scaling laws were found, corresponding to finite fractal dimensions: D+ approximately 2.3 in the gravity phase and D- approximately 4.6 in the antigravity phase. Similar, but somewhat lower numbers were obtained from the heat kernel singularity. The influence of the alpha-R2 terms in 2, 3 and 4 dimensions is discussed.
Shape from shading is a classical inverse problem in computer vision. We introduce a novel mathematical formulation for calculating local surface shape based on covariant derivatives, rather than the customary integra...
详细信息
The transformer architecture, known for capturing long-range dependencies and intricate patterns, has extended beyond natural language processing. Recently, it has attracted significant attention in quantum informatio...
详细信息
暂无评论