In recent years, Session Initiation Protocol (SIP) is more and more popular. However, there are many security problems in the Session Initiation Protocol. In 2005, Yang et al. [9] proposed a secure authentication sche...
详细信息
In recent years, Session Initiation Protocol (SIP) is more and more popular. However, there are many security problems in the Session Initiation Protocol. In 2005, Yang et al. [9] proposed a secure authentication scheme for Session Initiation Protocol. This authentication scheme is based on Diffie-Hellman [2] concept, so the computation cost of this authentication scheme is very high. In order to improve this shortcoming, Durlanik et al. [3] also proposed an authentication Scheme using ECDH in 2005. However, the computation cost of this authentication scheme is still very high. In this paper, we propose an efficient nonce-based authentication scheme. The computation cost of this authentication scheme is lower than Yang et al.s authentication scheme and Durlanik et al.s authentication scheme, and it is very suitable for low computation power equipment.
This paper provides a mathematically rigorous foundation for self-consistent mean field theory of the polymeric physics. We study a new model for dynamics of mono-polymer systems. Every polymer is regarded as a string...
详细信息
This paper provides a mathematically rigorous foundation for self-consistent mean field theory of the polymeric physics. We study a new model for dynamics of mono-polymer systems. Every polymer is regarded as a string of points which are moving randomly as Brownian motions and under elastic forces. Every two points on the same string or on two different strings also interact under a pairwise potential V. The dynamics of the system is described by a system of N coupled stochastic partial differential equations (SPDEs). We show that the mean field limit as N -+ c~ of the system is a self-consistent McKean-Vlasov type equation, under suitable assumptions on the initial and boundary conditions and regularity of V. We also prove that both the SPDE system of the polymers and the mean field limit equation are well-posed.
A novel Eulerian Gaussian beam method was developed in[8]to compute the Schrödinger equation efficiently in the semiclassical *** this paper,we introduce an efficient semi-Eulerian implementation of this *** new ...
详细信息
A novel Eulerian Gaussian beam method was developed in[8]to compute the Schrödinger equation efficiently in the semiclassical *** this paper,we introduce an efficient semi-Eulerian implementation of this *** new algorithm inherits the essence of the Eulerian Gaussian beam method where the Hessian is computed through the derivatives of the complexified level set functions instead of solving the dynamic ray tracing *** difference lies in that,we solve the ray tracing equations to determine the centers of the beams and then compute quantities of interests only around these *** yields effectively a local level set implementation,and the beam summation can be carried out on the initial physical space instead of the phase *** a consequence,it reduces the computational cost and also avoids the delicate issue of beam summation around the caustics in the Eulerian Gaussian beam ***,the semi-Eulerian Gaussian beam method can be easily generalized to higher order Gaussian beam methods,which is the topic of the second part of this *** numerical examples are provided to verify the accuracy and efficiency of both the first order and higher order semi-Eulerian methods.
Models for learning probability distributions such as generative models and density estimators behave quite differently from models for learning functions. One example is found in the memorization phenomenon, namely t...
详细信息
Radial basis functions(RBFs)can be used to approximate derivatives and solve differential equations in several ***,we compare one important scheme to ordinary finite differences by a mixture of numerical experiments a...
详细信息
Radial basis functions(RBFs)can be used to approximate derivatives and solve differential equations in several ***,we compare one important scheme to ordinary finite differences by a mixture of numerical experiments and theoretical Fourier analysis,that is,by deriving and discussing analytical formulas for the error in differentiating exp(ikx)for arbitrary k.‘Truncated RBF differences”are derived from the same strategy as Fourier and Chebyshev pseudospectral methods:Differentiation of the Fourier,Chebyshev or RBF interpolant generates a differentiation matrix that maps the grid point values or samples of a function u(x)into the values of its derivative on the *** Fourier and Chebyshev interpolants,the action of the differentiation matrix can be computed indirectly but efficiently by the Fast Fourier Transform(FFT).For RBF functions,alas,the FFT is inapplicable and direct use of the dense differentiation matrix on a grid of N points is prohibitively expensive(O(N2))unless N is ***,for Gaussian RBFs,which are exponentially localized,there is another option,which is to truncate the dense matrix to a banded matrix,yielding“truncated RBF differences”.The resulting formulas are identical in form to finite differences except for the difference *** a grid of spacing h with the RBF asφ(x)=exp(−α^(2)(x/h)^(2)),d f dx(0)≈∑^(∞)_(m)=1 wm{f(mh)−f(−mh)},where without approximation wm=(−1)m+12α^(2)/sinh(mα^(2)).We derive explicit formula for the differentiation of the linear function,f(X)≡X,and the errors *** show that Gaussian radial basis functions(GARBF),when truncated to give differentiation formulas of stencil width(2M+1),are significantly less accurate than(2M)-th order finite differences of the same stencil *** error of the infinite series(M=∞)decreases exponentially asα→***,truncated GARBF series have a second error(truncation error)that grows exponentially asα→*** forα∼O(1)where the sum of these two errors is minimized,it is
On March 11, 1944, the famous Eremitani Church in Padua (Italy) was destroyed in an Allied bombing along with the inestimable frescoes by Andrea Mantegna et al. contained in the Ovetari Chapel. In the last 60 years, s...
详细信息
ISBN:
(纸本)9783540728221
On March 11, 1944, the famous Eremitani Church in Padua (Italy) was destroyed in an Allied bombing along with the inestimable frescoes by Andrea Mantegna et al. contained in the Ovetari Chapel. In the last 60 years, several attempts have been made to restore the fresco fragments by traditional methods, but without much success. We have developed an efficient pattern recognition algorithm to map the original position and orientation of the fragments, based on comparisons with an old gray level image of the fresco prior to the damage. This innovative technique allowed for the partial reconstruction of the frescoes. Unfortunately, the surface covered by the fragments is only 77 m 2, while the original area was of several hundreds. This means that we can reconstruct only a fraction (less than 8%) of this inestimable artwork. In particular the original color of the blanks is not known. This begs the question of whether it is possible to estimate mathematically the original colors of the frescoes by making use of the potential information given by the available fragments and the gray level of the pictures taken before the damage. Can one estimate how faithful such restoration is? In this paper we retrace the development of the recovery of the frescoes as an inspiring and challenging real-life problem for the development of new mathematical methods. We introduce two models for the recovery of vector valued functions from incomplete data, with applications to the fresco recolorization problem. The models are based on the minimization of a functional which is formed by the discrepancy with respect to the data and additional regularization constraints. The latter refer to joint sparsity measures with respect to frame expansions for the first functional and functional total variation for the second. We establish the relations between these two models. As a byproduct we develop the basis of a theory of fidelity in color recovery, which is a crucial issue in art restoration and
The simplex algorithm is a widely used method for solving a linear programming problem (LP) which is first presented by George B. Dantzig. One of the important steps of the simplex algorithm is applying an appropriate...
详细信息
ISBN:
(纸本)9789881925336
The simplex algorithm is a widely used method for solving a linear programming problem (LP) which is first presented by George B. Dantzig. One of the important steps of the simplex algorithm is applying an appropriate pivot rule, the rule to select the entering variable. An effective pivot rule can lead to the optimal solution of LP with the small number of iterations. In a minimization problem, Dantzig's pivot rule selects an entering variable corresponding to the most negative reduced cost. The concept is to have the maximum improvement in the objective value per unit step of the entering variable. However, in some problems, Dantzig's rule may visit a large number of extreme points before reaching the optimal solution. In this paper, we propose a pivot rule that could reduce the number of such iterations over the Dantzig's pivot rule. The idea is to have the maximum improvement in the objective value function by trying to block a leaving variable that makes a little change in the objective function value as much as possible. Then we test and compare the efficacy of this rule with Dantzig' original rule.
We use explicit representation formulas to show that solutions to certain partial differential equations lie in Barron spaces or multilayer spaces if the PDE data lie in such function spaces. Consequently, these solut...
详细信息
A recent numerical study observed that neural network classifiers enjoy a large degree of symmetry in the penultimate layer. Namely, if h(x) = Af(x) + b where A is a linear map and f is the output of the penultimate l...
详细信息
We have investigated excimer laser irradiation of 2000-Å-thin as-deposited Al films on SiO2. Microstructural analysis of the irradiated films conducted with AFM and EBSD techniques reveals that there exists a wid...
详细信息
暂无评论