咨询与建议

限定检索结果

文献类型

  • 419 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 451 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 386 篇 理学
    • 233 篇 物理学
    • 168 篇 数学
    • 104 篇 统计学(可授理学、...
    • 56 篇 化学
    • 55 篇 生物学
    • 34 篇 系统科学
    • 23 篇 地球物理学
    • 14 篇 天文学
    • 8 篇 大气科学
  • 259 篇 工学
    • 85 篇 计算机科学与技术...
    • 60 篇 软件工程
    • 51 篇 材料科学与工程(可...
    • 44 篇 电气工程
    • 42 篇 电子科学与技术(可...
    • 41 篇 生物工程
    • 34 篇 动力工程及工程热...
    • 33 篇 化学工程与技术
    • 32 篇 控制科学与工程
    • 31 篇 力学(可授工学、理...
    • 22 篇 生物医学工程(可授...
    • 21 篇 信息与通信工程
    • 18 篇 光学工程
    • 11 篇 核科学与技术
    • 9 篇 仪器科学与技术
    • 7 篇 轻工技术与工程
  • 31 篇 管理学
    • 18 篇 图书情报与档案管...
    • 13 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 9 篇 农学
  • 9 篇 医学
    • 8 篇 临床医学
    • 7 篇 基础医学(可授医学...
  • 5 篇 经济学
  • 4 篇 法学
  • 1 篇 教育学

主题

  • 11 篇 molecular dynami...
  • 11 篇 density function...
  • 10 篇 microstructure
  • 10 篇 machine learning
  • 9 篇 inverse problems
  • 9 篇 gravitational wa...
  • 9 篇 classical statis...
  • 7 篇 deep neural netw...
  • 7 篇 diffusion
  • 6 篇 ground state
  • 6 篇 sphere packings
  • 6 篇 spheres
  • 6 篇 mean square erro...
  • 5 篇 ground state (qu...
  • 5 篇 potential energy
  • 5 篇 artificial neura...
  • 5 篇 gravitational wa...
  • 4 篇 correlation (sta...
  • 4 篇 structural prope...
  • 4 篇 stochastic syste...

机构

  • 56 篇 program in appli...
  • 49 篇 program in appli...
  • 48 篇 department of ch...
  • 33 篇 department of ch...
  • 32 篇 department of ph...
  • 29 篇 department of ph...
  • 27 篇 princeton instit...
  • 18 篇 applied mathemat...
  • 16 篇 department of ch...
  • 16 篇 princeton instit...
  • 16 篇 princeton center...
  • 15 篇 institute for pl...
  • 15 篇 department of ph...
  • 15 篇 department of ph...
  • 14 篇 university of so...
  • 13 篇 université libre...
  • 13 篇 indian institute...
  • 12 篇 department of as...
  • 12 篇 scuola di ingegn...
  • 12 篇 infn sezione di ...

作者

  • 63 篇 salvatore torqua...
  • 38 篇 torquato salvato...
  • 28 篇 weinan e.
  • 26 篇 jasra ajay
  • 25 篇 zhang linfeng
  • 24 篇 s. torquato
  • 18 篇 car roberto
  • 18 篇 frank h. stillin...
  • 16 篇 wang han
  • 13 篇 y. jiao
  • 12 篇 r. takahashi
  • 12 篇 j. c. bayley
  • 12 篇 k. komori
  • 12 篇 t. kajita
  • 12 篇 f. hellman
  • 12 篇 m. kinley-hanlon
  • 12 篇 t. mcrae
  • 12 篇 a. parisi
  • 12 篇 t. sawada
  • 12 篇 s. rowan

语言

  • 437 篇 英文
  • 13 篇 其他
检索条件"机构=Program in Applied Mathematics and Computational Science"
451 条 记 录,以下是91-100 订阅
排序:
Algorithms for Solving High Dimensional PDEs: From Nonlinear Monte Carlo to Machine Learning
arXiv
收藏 引用
arXiv 2020年
作者: Weinan, E. Han, Jiequn Jentzen, Arnulf Department of Mathematics Princeton University United States Program in Applied and Computational Mathematics Princeton University United States Faculty of Mathematics and Computer Science University of Münster Germany
In recent years, tremendous progress has been made on numerical algorithms for solving partial differential equations (PDEs) in a very high dimension, using ideas from either nonlinear (multilevel) Monte Carlo or deep... 详细信息
来源: 评论
A lower bound on the complexity of approximate nearest-neighbor searching on the Hamming cube  99
A lower bound on the complexity of approximate nearest-neigh...
收藏 引用
Proceedings of the thirty-first annual ACM symposium on Theory of Computing
作者: Amit Chakrabarti Bernard Chazelle Benjamin Gum Alexey Lvov Department of Computer Science Princeton University Department of Computer Science Princeton University and NEC Research Institute Program in Applied and Computational Mathematics Princeton University
来源: 评论
Empowering Optimal Control with Machine Learning: A Perspective from Model Predictive Control
收藏 引用
IFAC-PapersOnLine 2022年 第30期55卷 121-126页
作者: E Weinan Jiequn Han Jihao Long AI for Science Institute Beijing Center for Machine Learning Research and School of Mathematical Sciences Peking University Beijing China Center for Computational Mathematics Flatiron Institute New York 10010 USA Program of Applied and Computational Mathematics Princeton University Princeton 08544 USA
Solving complex optimal control problems have confronted computational challenges for a long time. Recent advances in machine learning have provided us with new opportunities to address these challenges. This paper ta... 详细信息
来源: 评论
Smooth graph signal interpolation for big data
arXiv
收藏 引用
arXiv 2018年
作者: Heimowitz, Ayelet Eldar, Yonina C. Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Faculty of Math and Computer Science Weizmann Institute of Science Rehovot Israel
In this paper we present the Markov variation, a smoothness measure which offers a probabilistic interpretation of graph signal smoothness. This measure is then used to develop an optimization framework for graph sign... 详细信息
来源: 评论
Adaptive coupling of a deep neural network potential to a classical force field
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Linfeng Wang, Han Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Center for Data Science and Beijing International Center for Mathematical Research Peking University China Beijing Institute of Big Data Research Beijing100871 China
An adaptive modeling method (AMM) that couples a deep neural network potential and a classical force field is introduced to address the accuracy-efficiency dilemma faced by the molecular simulation community. The AMM ... 详细信息
来源: 评论
MONGE-AMPÈRE FLOW FOR GENERATIVE MODELING
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Linfeng Weinan, E. Wang, Lei Program in Applied and Computational Mathematics Princeton University United States Department of Mathematics and Program in Applied and Computational Mathematics Princeton University United States Center for Data Science Peking University Beijing Institute of Big Data Research Beijing100871 China Institute of Physics Chinese Academy of Sciences Beijing100190 China
We present a deep generative model, named Monge-Ampère flow, which builds on continuous-time gradient flow arising from the Monge-Ampère equation in optimal transport theory. The generative map from the late... 详细信息
来源: 评论
Artificial neural network approach for turbulence models: A local framework
收藏 引用
Physical Review Fluids 2021年 第8期6卷 084612-084612页
作者: Chenyue Xie Xiangming Xiong Jianchun Wang Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA Department of Mechanics and Aerospace Engineering Southern University of Science and Technology Shenzhen 518055 People's Republic of China
A local artificial neural network (LANN) framework is developed for turbulence modeling. The Reynolds-averaged Navier-Stokes (RANS) unclosed terms are reconstructed by the artificial neural network based on the local ... 详细信息
来源: 评论
Structure and dynamics of highly charged heavy ions studied with the electron beam ion trap in Tokyo
收藏 引用
Hyperfine Interactions 2011年 第1期199卷 123-130页
作者: Nakamura, Nobuyuki Hu, Zhimin Watanabe, Hirofumi Li, Yueming Kato, Daiji Currell, Fred J. Tong, Xiao-Min Watanabe, Tsutomu Ohtani, Shunsuke Institute for Laser Science The University of Electro-Communications 1-5-1 Chofugaoka Chofu Tokyo 182-8585 Japan Chubu University 1200 Matsumoto-cho Kasugai-shi Aichi 487-8501 Japan Institute of Applied Physics and Computational Mathematics P.O.Box 8009 Beijing 100088 China National Institute for Fusion Science 322-6 Oroshi-cho Toki Gifu 509-5292 Japan Centre for Plasma Physics School of Mathematics and Physics Queen's University Belfast Belfast BT7 1NN United Kingdom Doctoral Program in Materials Science Graduate School of Pure and Applied Sciences University of Tsukuba Tsukuba Ibaraki 305-8573 Japan
In this paper, we present the structure and the dynamics of highly charged heavy ions studied through dielectronic recombination (DR) observations performed with the Tokyo electron beam ion trap. By measuring the ener... 详细信息
来源: 评论
NOMAD: nonlinear manifold decoders for operator learning  22
NOMAD: nonlinear manifold decoders for operator learning
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Jacob H. Seidman Georgios Kissas Paris Perdikaris George J. Pappas Graduate Program in Applied Mathematics and Computational Science University of Pennsylvania Department of Mechanical Engineering and Applied Mechanics University of Pennsylvania Department of Electrical and Systems Engineering University of Pennsylvania
Supervised learning in function spaces is an emerging area of machine learning research with applications to the prediction of complex physical systems such as fluid flows, solid mechanics, and climate modeling. By di...
来源: 评论
Active learning of uniformly accurate inter-atomic potentials for materials simulation
arXiv
收藏 引用
arXiv 2018年
作者: Zhang, Linfeng Lin, De-Ye Wang, Han Car, Roberto Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China CAEP Software Center for High Performance Numerical Simulation Huayuan Road 6 Beijing100088 China Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Beijing Institute of Big Data Research Beijing100871 China
An active learning procedure called Deep Potential Generator (DP-GEN) is proposed for the construction of accurate and transferable machine learning-based models of the potential energy surface (PES) for the molecular... 详细信息
来源: 评论