咨询与建议

限定检索结果

文献类型

  • 898 篇 期刊文献
  • 128 篇 会议
  • 3 册 图书

馆藏范围

  • 1,029 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 834 篇 理学
    • 465 篇 物理学
    • 429 篇 数学
    • 188 篇 统计学(可授理学、...
    • 108 篇 化学
    • 100 篇 生物学
    • 76 篇 系统科学
    • 30 篇 地球物理学
    • 22 篇 天文学
  • 597 篇 工学
    • 208 篇 计算机科学与技术...
    • 158 篇 软件工程
    • 100 篇 力学(可授工学、理...
    • 100 篇 材料科学与工程(可...
    • 81 篇 控制科学与工程
    • 78 篇 电子科学与技术(可...
    • 76 篇 动力工程及工程热...
    • 76 篇 电气工程
    • 71 篇 信息与通信工程
    • 70 篇 生物工程
    • 68 篇 化学工程与技术
    • 58 篇 生物医学工程(可授...
    • 55 篇 光学工程
    • 25 篇 机械工程
    • 16 篇 仪器科学与技术
    • 14 篇 核科学与技术
  • 57 篇 管理学
    • 29 篇 管理科学与工程(可...
    • 27 篇 图书情报与档案管...
    • 14 篇 工商管理
  • 15 篇 医学
    • 14 篇 临床医学
    • 12 篇 基础医学(可授医学...
  • 12 篇 经济学
    • 12 篇 应用经济学
  • 12 篇 农学
  • 10 篇 法学
  • 1 篇 教育学
  • 1 篇 军事学

主题

  • 20 篇 molecular dynami...
  • 18 篇 machine learning
  • 16 篇 stochastic syste...
  • 16 篇 density function...
  • 12 篇 inverse problems
  • 11 篇 eigenvalues and ...
  • 11 篇 microstructure
  • 10 篇 deep neural netw...
  • 10 篇 classical statis...
  • 9 篇 gravitational wa...
  • 9 篇 diffusion
  • 9 篇 artificial neura...
  • 8 篇 sphere packings
  • 8 篇 electronic struc...
  • 8 篇 spheres
  • 8 篇 mean square erro...
  • 7 篇 first-principles...
  • 7 篇 gradient methods
  • 7 篇 turbulence
  • 7 篇 mathematics

机构

  • 131 篇 program in appli...
  • 89 篇 program in appli...
  • 63 篇 department of ch...
  • 63 篇 department of ch...
  • 46 篇 department of ph...
  • 43 篇 program in appli...
  • 40 篇 department of ph...
  • 39 篇 program in appli...
  • 30 篇 beijing institut...
  • 27 篇 princeton instit...
  • 26 篇 program in appli...
  • 23 篇 program in appli...
  • 19 篇 department of ma...
  • 18 篇 applied mathemat...
  • 16 篇 department of ch...
  • 16 篇 princeton instit...
  • 16 篇 princeton center...
  • 15 篇 institute for pl...
  • 15 篇 department of ph...
  • 15 篇 department of ph...

作者

  • 79 篇 salvatore torqua...
  • 65 篇 weinan e.
  • 60 篇 torquato salvato...
  • 43 篇 zhang linfeng
  • 32 篇 singer amit
  • 28 篇 wang han
  • 28 篇 frank h. stillin...
  • 26 篇 jasra ajay
  • 25 篇 s. torquato
  • 24 篇 weinan e
  • 19 篇 car roberto
  • 18 篇 han jiequn
  • 17 篇 emily a. carter
  • 17 篇 bendory tamir
  • 17 篇 kim jaeuk
  • 16 篇 griffith boyce e...
  • 14 篇 ma chao
  • 14 篇 linfeng zhang
  • 13 篇 chen yixiao
  • 13 篇 y. jiao

语言

  • 976 篇 英文
  • 47 篇 其他
  • 4 篇 中文
检索条件"机构=Program in Applied and Computational Mathematics"
1029 条 记 录,以下是611-620 订阅
排序:
EMPRESS. X. Spatially resolved mass-metallicity relation in extremely metal-poor galaxies: Evidence of episodic star-formation fueled by a metal-poor gas infall
arXiv
收藏 引用
arXiv 2024年
作者: Nakajima, Kimihiko Ouchi, Masami Isobe, Yuki Xu, Yi Ozaki, Shinobu Nagao, Tohru Inoue, Akio K. Rauch, Michael Kusakabe, Haruka Onodera, Masato Nishigaki, Moka Ono, Yoshiaki Sugahara, Yuma Hattori, Takashi Hirai, Yutaka Hashimoto, Takuya Kim, Ji Hoon Moriya, Takashi J. Yanagisawa, Hiroto Aoyama, Shohei Fujimoto, Seiji Fukushima, Hajime Fukushima, Keita Harikane, Yuichi Hatano, Shun Hayashi, Kohei Ishigaki, Tsuyoshi Kawasaki, Masahiro Kojima, Takashi Komiyama, Yutaka Koyama, Shuhei Koyama, Yusei Lee, Chien-Hsiu Matsumoto, Akinori Mawatari, Ken Motohara, Kentaro Murai, Kai Nagamine, Kentaro Nakane, Minami Saito, Tomoki Sasaki, Rin Shibuya, Takatoshi Suzuki, Akihiro Takeuchi, Tsutomu T. Umeda, Hiroya Umemura, Masayuki Watanabe, Kuria Yabe, Kiyoto Yajima, Hidenobu Zhang, Yechi National Astronomical Observatory of Japan 2-21-1 Osawa Mitaka Tokyo181-8588 Japan Institute for Cosmic Ray Research The University of Tokyo 5-1-5 Kashiwanoha Chiba Kashiwa277-8582 Japan Osawa 2-21-1 Mitaka Tokyo181-8588 Japan University of Tokyo Chiba Kashiwa277-8583 Japan Kavli Institute for Cosmology University of Cambridge Madingley Road CambridgeCB3 0HA United Kingdom Cavendish Laboratory University of Cambridge 19 JJ Thomson Avenue CambridgeCB3 0HE United Kingdom Waseda Research Institute for Science and Engineering Faculty of Science and Engineering Waseda University 3-4-1 Okubo Shinjuku Tokyo169-8555 Japan Department of Physics Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan Department of Astronomy Graduate School of Science The University of Tokyo 7-3-1 Hongo Bunkyo Tokyo113-0033 Japan Research Center for Space and Cosmic Evolution Ehime University Bunkyo-cho 2-5 Ehime Matsuyama790-8577 Japan Department of Physics School of Advanced Science and Engineering Faculty of Science and Engineering Waseda University 3-4-1 Okubo Shinjuku Tokyo169-8555 Japan Observatories of the Carnegie Institution for Science 813 Santa Barbara St. PasadenaCA91101 United States Observatoire de Genève Université de Genève 51 Chemin de Pégase Versoix1290 Switzerland 650 North Aohoku Place HiloHI96720 United States Department of Physics and Astronomy University of Notre Dame 225 Nieuwland Science Hall Notre DameIN46556 United States Astronomical Institute Tohoku University 6-3 Aoba Aramaki Aoba-ku Miyagi Sendai980-8578 Japan Division of Physics Faculty of Pure and Applied Sciences University of Tsukuba Ibaraki Tsukuba305-8571 Japan Faculty of Pure and Applied Sciences University of Tsukuba Ibaraki Tsukuba305-8571 Japan Astronomy Program Department of Physics and Astronomy Seoul National University 1 Gwanak-ro Gwanak-gu Seoul08826 Korea Republic of SNU Astronomy Research Cent
Using the Subaru/FOCAS IFU capability, we examine the spatially resolved relationships between gas-phase metallicity, stellar mass, and star-formation rate surface densities (Σ★ and ΣSFR, respectively) in extremely... 详细信息
来源: 评论
Classical many-particle systems with unique disordered ground states
arXiv
收藏 引用
arXiv 2017年
作者: Zhang, G. Stillinger, F.H. Torquato, S. Department of Chemistry Princeton University PrincetonNJ08544 Department of Chemistry Department of Physics Princeton Institute for the Science and Technology of Materials Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544
Classical ground states (global energy-minimizing configurations) of many-particle systems arefitypically unique crystalline structures, implying zero enumeration entropy of distinct patterns (aside from trivial symme... 详细信息
来源: 评论
The Brain Tumor Segmentation in Pediatrics (BraTS-PEDs) Challenge: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs)
arXiv
收藏 引用
arXiv 2024年
作者: Kazerooni, Anahita Fathi Khalili, Nastaran Liu, Xinyang Gandhi, Deep Jiang, Zhifan Anwar, Syed Muhammed Albrecht, Jake Adewole, Maruf Anazodo, Udunna Anderson, Hannah Baid, Ujjwal Bergquist, Timothy Borja, Austin J. Calabrese, Evan Chung, Verena Conte, Gian-Marco Dako, Farouk Eddy, James Ezhov, Ivan Familiar, Ariana Farahani, Keyvan Franson, Andrea Gottipati, Anurag Haldar, Shuvanjan Iglesias, Juan Eugenio Janas, Anastasia Johansen, Elaine Jones, Blaise V. Khalili, Neda Kofler, Florian LaBella, Dominic Lai, Hollie Anne Van Leemput, Koen Li, Hongwei Bran Maleki, Nazanin McAllister, Aaron S. Meier, Zeke Menze, Bjoern Moawad, Ahmed W. Nandolia, Khanak K. Pavaine, Julija Piraud, Marie Poussaint, Tina Prabhu, Sanjay P. Reitman, Zachary Rudie, Jeffrey D. Sanchez-Montano, Mariana Shaikh, Ibraheem Salman Sheth, Nakul Tu, Wenxin Wang, Chunhao Ware, Jeffrey B. Wiestler, Benedikt Zapaishchykova, Anna Bornhorst, Miriam Deutsch, Michelle Fouladi, Maryam Lazow, Margot Mikael, Leonie Hummel, Trent Kann, Benjamin de Blank, Peter Hoffman, Lindsey Aboian, Mariam Nabavizadeh, Ali Packer, Roger Bakas, Spyridon Resnick, Adam Rood, Brian Vossough, Arastoo Linguraru, Marius George Children’s Hospital of Philadelphia PhiladelphiaPA United States Department of Neurosurgery University of Pennsylvania PhiladelphiaPA United States University of Pennsylvania PhiladelphiaPA United States Sheikh Zayed Institute for Pediatric Surgical Innovation Children’s National Hospital WashingtonDC United States Sage Bionetworks United States Lab Crestview Radiology Lagos Nigeria McGill University MontrealQC Canada Department of Radiology Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Division of Computational Pathology Department of Pathology and Laboratory Medicine Indiana University School of Medicine IndianapolisIN United States Department of Neurosurgery The University of Southern California CA United States Department of Radiology Duke University Medical Center DurhamNC United States Mayo Clinic MN United States Center for Global Health Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Informatics Technical University Munich Germany TranslaTUM - Central Institute for Translational Cancer Research Technical University of Munich Germany Cancer Imaging Program National Cancer Institute National Institutes of Health BethesdaMD United States C. S. Mott Children’s Hospital University of Michigan MI United States Biomedical Engineering Rutgers University New BrunswickNJ United States Athinoula A Martinos Center for Biomedical Imaging Massachusetts General Hospital BostonMA United States Yale University New HavenCT United States PrecisionFDA U.S. Food and Drug Administration Silver SpringMD United States Cincinnati Children’s Hospital Medical Center OH United States Helmholtz AI Helmholtz Munich Germany Department of Radiation Oncology Duke University Medical Center DurhamNC United States Department of Radiology Children’s Health Orange County CA United States Department of Applied Mathematics and Computer Science Technical University of De
Pediatric tumors of the central nervous system are the most common cause of cancer-related death in children. The five-year survival rate for high-grade gliomas in children is less than 20%. Due to their rarity, the d... 详细信息
来源: 评论
Dynamical Sampling with Random Noise
Dynamical Sampling with Random Noise
收藏 引用
International Conference on Sampling Theory and Applications
作者: Akram Aldroubi Longxiu Huang Ilya Krishtal Roy Lederman Department of Mathematics Vanderbilt University Department of Mathematics Northern Illinois University Program in Applied and Computational Mathematics Princeton University
In this paper we consider a system of dynamical sampling, i.e. sampling a signal f that evolves in time under the action of an evolution operator A. We discuss the error in the recovery of the original signal when the... 详细信息
来源: 评论
Author Correction: Genetic drivers and cellular selection of female mosaic X chromosome loss
收藏 引用
Nature 2024年 第8043期636卷 E7页
作者: Aoxing Liu Giulio Genovese Yajie Zhao Matti Pirinen Seyedeh M Zekavat Katherine A Kentistou Zhiyu Yang Kai Yu Caitlyn Vlasschaert Xiaoxi Liu Derek W Brown Georgi Hudjashov Bryan R Gorman Joe Dennis Weiyin Zhou Yukihide Momozawa Saiju Pyarajan Valdislav Tuzov Fanny-Dhelia Pajuste Mervi Aavikko Timo P Sipilä Awaisa Ghazal Wen-Yi Huang Neal D Freedman Lei Song Eugene J Gardner Vijay G Sankaran Aarno Palotie Hanna M Ollila Taru Tukiainen Stephen J Chanock Reedik Mägi Pradeep Natarajan Mark J Daly Alexander Bick Steven A McCarroll Chikashi Terao Po-Ru Loh Andrea Ganna John R B Perry Mitchell J Machiela Institute for Molecular Medicine Finland (FIMM) HiLIFE University of Helsinki Helsinki Finland. liuaoxin@***. Analytic and Translational Genetics Unit Massachusetts General Hospital Boston MA USA. liuaoxin@***. Center for Genomic Medicine Massachusetts General Hospital Boston MA USA. liuaoxin@***. Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA. liuaoxin@***. Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard Cambridge MA USA. liuaoxin@***. Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA. giulio@***. Stanley Center for Psychiatric Research Broad Institute of MIT and Harvard Cambridge MA USA. giulio@***. Department of Genetics Harvard Medical School Boston MA USA. giulio@***. MRC Epidemiology Unit Institute of Metabolic Science University of Cambridge Cambridge UK. Institute for Molecular Medicine Finland (FIMM) HiLIFE University of Helsinki Helsinki Finland. Department of Public Health University of Helsinki Helsinki Finland. Department of Mathematics and Statistics University of Helsinki Helsinki Finland. Program in Medical and Population Genetics Broad Institute of MIT and Harvard Cambridge MA USA. Cardiovascular Research Center Massachusetts General Hospital Boston MA USA. Department of Ophthalmology Massachusetts Eye and Ear Harvard Medical School Boston MA USA. Division of Cancer Epidemiology and Genetics National Cancer Institute Rockville MD USA. Department of Medicine Queen's University Kingston Ontario Canada. Laboratory for Statistical and Translational Genetics RIKEN Center for Integrative Medical Sciences Yokohama Japan. Cancer Prevention Fellowship Program Division of Cancer Prevention National Cancer Institute Rockville MD USA. Estonian Genome Centre Institute of Genomics University of Tartu Tartu Estonia. Center for Data and Computational Sciences (C-DACS) VA Cooperative Studies Program VA Boston Health
来源: 评论
Noisy Hegselmann-Krause systems: Phase transition and the 2R-conjecture  55
Noisy Hegselmann-Krause systems: Phase transition and the 2R...
收藏 引用
55th IEEE Conference on Decision and Control, CDC 2016
作者: Wang, Chu Li, Qianxiao Weinan, E. Chazelle, Bernard Program in Applied and Computational Mathematics Princeton University PrincetonNJ08540 United States Nokia Bell Labs 600 Mountain Avenue Murray HillNJ07974 United States Department of Mathematics Program in Applied and Computational Mathematics Princeton University NJ08540 United States Department of Computer Science Princeton University PrincetonNJ08540 United States
The classic Hegselmann-Krause (HK) model for opinion dynamics consists of a set of agents on the real line, each one instructed to move, at every time step, to the mass center of the agents within a fixed distance R. ...
来源: 评论
Modeling binary time series using gaussian processes with application to predicting sleep states
arXiv
收藏 引用
arXiv 2017年
作者: Gao, Xu Shahbaba, Babak Ombao, Hernando Department of Statistics University of California IrvineCA United States Department of Cognitive Sciences University of California IrvineCA United States Program on Applied Mathematics and Computational Science King Abdullah University of Science and Technology
Motivated by the problem of predicting sleep states, we develop a mixed effects model for binary time series with a stochastic component represented by a Gaussian process. The fixed component captures the effects of c... 详细信息
来源: 评论
Fourier phase retrieval: Uniqueness and algorithms
arXiv
收藏 引用
arXiv 2017年
作者: Bendory, Tamir Beinerty, Robert Eldarz, Yonina C. Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Institute of Mathematics and Scientific Computing University of Graz Heinrichstraße 36 Graz8010 Austria Andrew and Erna Viterbi Faculty of Electrical Engineering Technion - Israel Institute of Technology Haifa Israel
The problem of recovering a signal from its phaseless Fourier transform measurements, called Fourier phase retrieval, arises in many applications in engineering and science. Fourier phase retrieval poses fundamental t... 详细信息
来源: 评论
Solving High-Dimensional Partial Differential Equations Using Deep Learning
arXiv
收藏 引用
arXiv 2017年
作者: Han, Jiequn Jentzen, Arnulf Weinan, E. Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Department of Mathematics ETH Zürich Rämistrasse 101 Zürich8092 Switzerland Department of Mathematics Princeton University PrincetonNJ08544 United States Beijing Institute of Big Data Research Beijing100871 China
Developing algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the notoriously difficult problem known as the "curse of dim... 详细信息
来源: 评论
Fisher information matrix of binary time series
arXiv
收藏 引用
arXiv 2017年
作者: Gao, Xu Ombao, Hernando Gillen, Daniel Department of Statistics University of California IrvineCA United States Department of Cognitive Sciences University of California IrvineCA United States Program on Applied Mathematics and Computational Science King Abdullah University of Science and Technology Saudi Arabia
A common approach to analyzing categorical correlated time series data is to fit a gen- eralized linear model (GLM) with past data as covariate inputs. There remain challenges to conducting inference for short time se... 详细信息
来源: 评论