In this paper we present two applications of a Stability Theorem of Hilbert frames to nonharmonic Fourier series and wavelet Riesz basis. The first result is an enhancement of the Paley-Wiener type constant for nonhar...
详细信息
In this paper we present two applications of a Stability Theorem of Hilbert frames to nonharmonic Fourier series and wavelet Riesz basis. The first result is an enhancement of the Paley-Wiener type constant for nonharmonic series given by Duffin and Schaefer in [6] and used recently in some applications (see (3]). In the case of an orthonormal basis, our estimate reduces to Kadec' optimal 1/4 result. The second application proves that a phenomenon discovered by Daubechies and Tchamitchian [4] for the orthonormal Meyer wavelet basis (stability of the Riesz basis property under small changes of the translation parameter) actually holds for a large class of wavelet Riesz bases.
Classical spin liquids (CSLs) are intriguing states of matter that do not exhibit long-range magnetic order and are characterized by an extensive ground-state degeneracy. Adding quantum fluctuations, which induce dyna...
详细信息
A Monte Carlo scheme for the search of extensive conserved quantities in lattice gas automata models is described. It is based on an approximation to the microscopic dynamics and it amounts to estimating the dimension...
A Monte Carlo scheme for the search of extensive conserved quantities in lattice gas automata models is described. It is based on an approximation to the microscopic dynamics and it amounts to estimating the dimension of the eigenspace with eigenvalue 1 of a linear operator related to the lattice gas automata model evolution operator linearized around equilibrium distributions. The applicability of this technique is limited to models with collision rules satisfying semi-detailed balance.
The purpose of this paper is to study the motion of a spinless axisymmetric rigid body in a Newtonian field when we suppose the motion of the center of mass of the rigid body is on a Keplerian orbit. In this case the ...
详细信息
The purpose of this paper is to study the motion of a spinless axisymmetric rigid body in a Newtonian field when we suppose the motion of the center of mass of the rigid body is on a Keplerian orbit. In this case the system can be reduced to a Hamiltonian system with configuration space of a two-dimensional sphere. We prove that the restricted planar motion is analytical nonintegrable and we find horseshoes due to the eccentricity of the orbit. In the case I-3/I-1 > 4/3, we prove that the system on the sphere is also analytical nonintegrable.
Dielectric properties of the hydrogen-bonded ferroelectric crystal KH_(2)PO_(4)(KDP)differ significantly from those of KD_(2)PO_(4)(DKDP).It is well established that deuteration affects the interplay of hydrogenbond s...
详细信息
Dielectric properties of the hydrogen-bonded ferroelectric crystal KH_(2)PO_(4)(KDP)differ significantly from those of KD_(2)PO_(4)(DKDP).It is well established that deuteration affects the interplay of hydrogenbond switches and heavy ion displacements that underlie the emergence of macroscopic polarization,but a detailed microscopic model is *** show that all-atompath integral molecular dynamics simulations can predict the isotope effects,revealing the microscopic mechanism that differentiates KDP and *** tunneling generates phosphate configurations that do not contribute to the *** low temperatures,these quantum dipolar defects are substantial in KDP but negligible in *** intrinsic defects explain why KDP has lower spontaneous polarization and transition entropy than *** prominent role of quantum fluctuations in KDP is related to the unusual strength of the hydrogen bonds and should be equally important in other crystals of the KDP family,which exhibit similar isotope effects.
We study the semi-classical limit of the Schro¨dinger equation in a crystal in the presence of an external potential and magnetic field. We first introduce the Bloch-Wigner transform and derive the asymptotic equ...
详细信息
We study the semi-classical limit of the Schro¨dinger equation in a crystal in the presence of an external potential and magnetic field. We first introduce the Bloch-Wigner transform and derive the asymptotic equations governing this transform in the semi-classical setting. For the second part, we focus on the appearance of the Berry curvature terms in the asymptotic equations. These terms play a crucial role in many important physical phenomena such as the quantum Hall effect. We give a simple derivation of these terms in different settings using asymptotic analysis.
The implementation of titanium dioxide (TiO2) as a photocatalyst material in hydrogen (H2) evolution reaction (HER) has embarked renewed interest in the past decade. Rapid electron-hole pairs recombination and wide ba...
详细信息
A new mechanism for the creation of structures in two-dimensional turbulence is investigated. The forced Navier-Stokes equations are solved numerically in a periodic square in the limit of zero viscosity. The force is...
详细信息
A new mechanism for the creation of structures in two-dimensional turbulence is investigated. The forced Navier-Stokes equations are solved numerically in a periodic square in the limit of zero viscosity. The force is a white-in-time random noise acting in a narrow band of high wavenumbers. The inverse-cascade process and the presence of the boundary lead ultimately to a pile-up of energy in the lowest wavenumber (Bose condensation). In the asymptotic limit where the enstrophy cascade range is negligible, Bose condensation is solely responsible for the generation of coherent vortices and intermittency in the system. We present the evolution of the velocity and vorticity fields through the later stages of the condensate state, and explore the possible implications for atmospheric turbulence constrained by the periodic domain about the earth.
We describe here a new technique and a package for rapid reconstruction of smooth surfaces from scattered data points. This method is based on a fast recurrent algorithm for the Delauney triangulation followed by rati...
详细信息
We describe here a new technique and a package for rapid reconstruction of smooth surfaces from scattered data points. This method is based on a fast recurrent algorithm for the Delauney triangulation followed by rational interpolation inside triangles. Preprocessing of data includes sorting and takes N log(N) time. Afterwards the computational cost is a linear function of the amount of data. This technique enables a user to construct a surface of any class of smoothness and degree of convergence. Our package reconstructs surfaces that can be uniquely projected either on a plane or on a sphere. The graphical section of this package includes three dimensional transformations, shading, hidden surface removal, interactive adding points into triangulation by mouse, etc. The graphics has been implemented on Iris-4D, SUN-4 and IBM-5080.
We present a fast numerical method for solving the incompressible Euler's equation in two dimensions for the special case when the flow field can be represented by patches of constant vorticity. The method is an a...
We present a fast numerical method for solving the incompressible Euler's equation in two dimensions for the special case when the flow field can be represented by patches of constant vorticity. The method is an adaptive vortex method in which cells (vortex blobs) of multiple scales are used to represent the patches so that the number of vortex blobs needed to approximate the patches is proportional to the length of the boundary curve of the patch and inversely proportional to the width of the smallest blob (cell) used. Points along the boundaries of the patches are advected according to the velocity obtained from the approximating vortices.
暂无评论