Accurate orientation estimation is a crucial component of 3D molecular structure reconstruction, both in single-particle cryo-electron microscopy (cryo-EM) and in the increasingly popular field of cryo-electron tomogr...
详细信息
A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinfo...
详细信息
A semi-analytical finite element method(SAFEM),based on the two-scale asymptotic homogenization method(AHM)and the finite element method(FEM),is implemented to obtain the effective properties of two-phase fiber-reinforced composites(FRCs).The fibers are periodically distributed and unidirectionally aligned in a homogeneous *** framework addresses the static linear elastic micropolar problem through partial differential equations,subject to boundary conditions and perfect interface contact *** mathematical formulation of the local problems and the effective coefficients are presented by the *** local problems obtained from the AHM are solved by the FEM,which is denoted as the *** numerical results are provided,and the accuracy of the solutions is analyzed,indicating that the formulas and results obtained with the SAFEM may serve as the reference points for validating the outcomes of experimental and numerical computations.
High-order finite volume and finite element methods offer impressive accuracy and cost efficiency when solving hyperbolic conservation laws with smooth solutions. However, if the solution contains discontinuities, the...
详细信息
High-order finite volume and finite element methods offer impressive accuracy and cost efficiency when solving hyperbolic conservation laws with smooth solutions. However, if the solution contains discontinuities, these high-order methods can introduce unphysical oscillations and severe overshoots/undershoots. Slope limiters are an effective remedy, combating these oscillations by preserving monotonicity. Some limiters can even maintain a strict maximum principle in the numerical solution. They can be classified into one of two categories: a priori and a posteriori limiters. The former revises the high-order solution based only on data at the current time tn, while the latter involves computing a candidate solution at tn+1 and iteratively recomputing it until some conditions are satisfied. These two limiting paradigms are available for both finite volume and finite element methods. In this work, we develop a methodology to compare a priori and a posteriori limiters for finite volume solvers at arbitrarily high order. We select the maximum principle preserving scheme presented in [1, 2] as our a priori limited scheme. For a posteriori limiting, we adopt the methodology presented in [3] and search for so-called troubled cells in the candidate solution. We revise them with a robust MUSCL fallback scheme. The linear advection equation is solved in both one and two dimensions and we compare variations of these limited schemes based on their ability to maintain a maximum principle, solution quality over long time integration and computational cost. This analysis reveals a fundamental tradeoff between these three aspects. The high-order a posteriori limited solutions boast great quality at long time-scales, taking full advantage of the sharp gradients of the high-order finite volume method. However, they introduce consistent maximum principle violations. On the other hand, the high-order a priori limited solutions can preserve a strict maximum principle. Interestingly, thi
The modeling of probability distributions, specifically generative modeling and density estimation, has become an immensely popular subject in recent years by virtue of its outstanding performance on sophisticated dat...
详细信息
Rigorous theories connecting physical properties of a heterogeneous material to its microstructure offer a promising avenue to guide the computational material design and optimization. The spectral density function χ...
详细信息
Rigorous theories connecting physical properties of a heterogeneous material to its microstructure offer a promising avenue to guide the computational material design and optimization. The spectral density function χ̃V(k), which can be obtained experimentally from scattering data, enables accurate determination of various transport and wave propagation characteristics, including the time-dependent diffusion spreadability S(t) and effective dynamic dielectric constant εe for electromagnetic wave propagation. Moreover, χ̃V(k) determines rigorous upper bounds on the fluid permeability K. Given the importance of χ̃V(k), we present here an efficient Fourier-space based computational framework to construct three-dimensional (3D) statistically isotropic two-phase heterogeneous materials corresponding to targeted spectral density functions. In particular, we employ a variety of analytical functional forms for χ̃V(k) that satisfy all known necessary conditions to construct disordered stealthy hyperuniform, standard hyperuniform, nonhyperuniform, and antihyperuniform two-phase heterogeneous material systems at varying phase volume fractions. We show that by tuning the correlations in the system across length scales via the targeted functions, one can generate a rich spectrum of distinct structures within each of the above classes of materials. Importantly, we present the first realization of antihyperuniform two-phase heterogeneous materials in 3D, which are characterized by autocovariance function χV(r) with a power-law tail, resulting in microstructures that contain clusters of dramatically different sizes and morphologies. We also determine the diffusion spreadability S(t) and estimate the fluid permeability K associated with all of the constructed materials directly from the corresponding spectral densities. Although it is well established that the long-time asymptotic scaling behavior of S(t) only depends on the functional form of χ̃V(k), with the stealthy hyperuniform a
The weak-field limit of Einstein-Cartan (EC) relativity is studied. The equations of EC theory are rewritten such that they formally resemble those of Einstein general relativity (EGR); this allows ideas from post-New...
详细信息
The weak-field limit of Einstein-Cartan (EC) relativity is studied. The equations of EC theory are rewritten such that they formally resemble those of Einstein general relativity (EGR); this allows ideas from post-Newtonian theory to be imported without essential change. The equations of motion are then written both at first post-Newtonian (1PN) order and at 1.5PN order. EC theory’s 1PN equations of motion are found to be those of a micropolar/Cosserat elastic medium, along with a decoupled evolution equation for nonclassical, spin-related fields. It seems that a necessary condition for these results to hold is that one chooses the nonclassical fields to scale with the speed of light in a certain empirically reasonable way. Finally, the 1.5PN equations give greater insight into the coupling between energy-momentum and spin within slowly moving, weakly gravitating matter. Specifically, the weakly relativistic modifications to Cosserat theory involve a gravitational torque and an augmentation of the gravitational force due to a dynamic mass moment density with an accompanying dynamic mass moment density flux, and new forms of linear momentum density captured by a dynamic mass density flux and a dynamic momentum density.
We report an ab initio multi-scale study of lead titanate using the Deep Potential (DP) models, a family of machine learning-based atomistic models, trained on first-principles density functional theory data, to repre...
详细信息
In the basic vehicle routing problem (VRP), a vehicle must deliver goods from one centralized warehouse to multiple customers efficiently. Several VRP variants and constraints exist, including different product types,...
详细信息
ISBN:
(数字)9798350385144
ISBN:
(纸本)9798350385151
In the basic vehicle routing problem (VRP), a vehicle must deliver goods from one centralized warehouse to multiple customers efficiently. Several VRP variants and constraints exist, including different product types, specific delivery times, multiple warehouses, vehicle fuel constraints, and pick-up from one location and delivery to another. This work proposes and demonstrates a flexible algorithm for solving the VRP via ant colony optimization (ACO) that can address many of the variants discussed above. ACO algorithms mimic the behavior of ants, learning optimal paths to a food source and back to the nest based on stigmergic behavior. This work compares a proposed, more flexible ACO algorithm to a traditional optimization algorithm that is implemented in the Google VRP solver. Readily available data were used to test and demonstrate results. Several VRP variants were implemented in both the (proposed) flexible ACO algorithm and the Google VRP solver. The flexible ACO algorithm performed better in terms of distance traveled versus the Google VRP solver for two variants and worse for three other cases. However, the Google VRP solver was not able to solve some of the VRP variant combinations considered here and failed when solving some backhaul datasets. Because the flexible ACO algorithm was able to better handle many case variations, it may be an attractive alternative optimization tool.
Despite their rich information content,electronic structure data amassed at high volumes in ab initio molecular dynamics simulations are generally *** introduce a transferable high-fidelity neural network representati...
详细信息
Despite their rich information content,electronic structure data amassed at high volumes in ab initio molecular dynamics simulations are generally *** introduce a transferable high-fidelity neural network representation of such data in the form of tight-binding Hamiltonians for crystalline *** predictive representation of ab initio electronic structure,combined with machinelearning boosted molecular dynamics,enables efficient and accurate electronic evolution and *** it is applied to a one-dimension charge-density wave material,carbyne,we are able to compute the spectral function and optical conductivity in the canonical *** spectral functions evaluated during soliton-antisoliton pair annihilation process reveal significant renormalization of low-energy edge modes due to retarded electron-lattice coupling beyond the Born-Oppenheimer *** availability of an efficient and reusable surrogate model for the electronic structure dynamical system will enable calculating many interesting physical properties,paving the way to previously inaccessible or challenging avenues in materials modeling.
Two-phase heterogeneous materials arise in a plethora of natural and synthetic situations, such as alloys, composites, geological media, complex fluids, and biological media, exhibit a wide-variety of microstructures,...
详细信息
暂无评论