We employ a parallel, three-dimensional level-set code to simulate the dynamics of isolated dislocation lines and loops in an obstacle-rich environment. This system serves as a convenient prototype of those in which e...
We employ a parallel, three-dimensional level-set code to simulate the dynamics of isolated dislocation lines and loops in an obstacle-rich environment. This system serves as a convenient prototype of those in which extended, one-dimensional objects interact with obstacles and the out-of-plane motion of these objects is key to understanding their pinning-depinning behavior. In contrast to earlier models of dislocation motion, we incorporate long-ranged interactions among dislocation segments and obstacles to study the effect of climb on dislocation dynamics in the presence of misfitting penetrable obstacles/solutes, as embodied in an effective climb mobility. Our main observations are as follows. First, increasing climb mobility leads to more effective pinning by the obstacles, implying increased strengthening. Second, decreasing the range of interactions significantly reduces the effect of climb. The dependence of the critical stress on obstacle concentration and misfit strength is also explored and compared with existing models. In particular, our results are shown to be in reasonable agreement with the Friedel-Suzuki theory. Finally, the limitations inherent in the simplified model employed here, including the neglect of some lattice effects and the use of a coarse-grained climb mobility, are discussed.
Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous efforts in modeli...
详细信息
Bistable structures associated with nonlinear deformation behavior, exemplified by the Venus flytrap and slap bracelet, can switch between different functional shapes upon actuation. Despite numerous efforts in modeling such large deformation behavior of shells, the roles of mechanical and nonlinear geometric effects on bistability remain elusive. We demonstrate, through both theoretical analysis and tabletop experiments, that two dimensionless parameters control bistability. Our work classifies the conditions for bistability, and extends the large deformation theory of plates and shells.
暂无评论