咨询与建议

限定检索结果

文献类型

  • 124 篇 期刊文献
  • 70 篇 会议
  • 1 册 图书

馆藏范围

  • 195 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 理学
    • 68 篇 生物学
    • 36 篇 数学
    • 23 篇 化学
    • 13 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 6 篇 物理学
    • 2 篇 天文学
    • 2 篇 海洋科学
    • 2 篇 生态学
  • 104 篇 工学
    • 51 篇 计算机科学与技术...
    • 43 篇 生物工程
    • 35 篇 软件工程
    • 30 篇 生物医学工程(可授...
    • 13 篇 化学工程与技术
    • 11 篇 信息与通信工程
    • 8 篇 电气工程
    • 6 篇 控制科学与工程
    • 2 篇 光学工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 环境科学与工程(可...
  • 26 篇 农学
    • 8 篇 作物学
  • 22 篇 管理学
    • 12 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 11 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
    • 6 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 13 篇 proteins
  • 11 篇 bioinformatics
  • 7 篇 deep learning
  • 5 篇 rna
  • 4 篇 cancer
  • 4 篇 data integration
  • 4 篇 dna
  • 4 篇 computational bi...
  • 4 篇 mathematics
  • 4 篇 embeddings
  • 4 篇 gene expression
  • 4 篇 amino acids
  • 4 篇 mathematical mod...
  • 3 篇 protein engineer...
  • 3 篇 genes
  • 3 篇 data mining
  • 3 篇 biochemistry
  • 3 篇 count data
  • 3 篇 correlation
  • 3 篇 clustering algor...

机构

  • 12 篇 bioinformatics a...
  • 6 篇 department of bi...
  • 6 篇 university of co...
  • 6 篇 university colle...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 royal stoke univ...
  • 5 篇 biomedical engin...
  • 5 篇 department of ex...
  • 5 篇 victorian instit...

作者

  • 15 篇 krishnaswamy smi...
  • 14 篇 bens pardamean
  • 12 篇 pardamean bens
  • 10 篇 alam ahmad hiday...
  • 9 篇 hidayat alam ahm...
  • 9 篇 kluger yuval
  • 9 篇 smita krishnaswa...
  • 7 篇 wolf guy
  • 6 篇 bhaskar dhananja...
  • 5 篇 rudi nirwantono
  • 5 篇 nirwantono rudi
  • 5 篇 arif budiarto
  • 5 篇 van dijk david
  • 5 篇 joko pebrianto t...
  • 5 篇 perlmutter micha...
  • 4 篇 guy wolf
  • 4 篇 stanley jay s.
  • 4 篇 seungyeoun lee
  • 4 篇 landa boris
  • 4 篇 trinugroho joko ...

语言

  • 189 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"机构=Program in Bioinformatics and Mathematics"
195 条 记 录,以下是61-70 订阅
排序:
Position: Bayesian deep learning is needed in the age of large-scale AI  24
Position: Bayesian deep learning is needed in the age of lar...
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Theodore Papamarkou Maria Skoularidou Konstantina Palla Laurence Aitchison Julyan Arbel David Dunson Maurizio Filippone Vincent Fortuin Philipp Hennig José Miguel Hernández-Lobato Aliaksandr Hubin Alexander Immer Theofanis Karaletsos Mohammad Emtiyaz Khan Agustinus Kristiadi Yingzhen Li Stephan Mandt Christopher Nemeth Michael A. Osborne Tim G. J. Rudner David Rügamer Yee Whye Teh Max Welling Andrew Gordon Wilson Ruqi Zhang Department of Mathematics The University of Manchester Manchester UK Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge Spotify London UK Computational Neuroscience Unit University of Bristol Bristol UK Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany and Department of Computer Science Technical University of Munich Munich Germany and Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge UK Department of Mathematics University of Oslo Oslo Norway and Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative California Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London UK Department of Computer Science UC Irvine Irvine Department of Mathematics and Statistics Lancaster University Lancaster UK Department of Engineering Science University of Oxford Oxford UK Center for Data Science New York University New York Munich Center for Machine Learning Munich Germany and Department of Statistics LMU Munich Munich Germany DeepMind London UK and Department of Statistics University of Oxford Oxford UK Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences and Center for Data Science Computer Science Department New York University New York Department of Computer Science Purdue University West Lafayette
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective...
来源: 评论
Spectral neighbor joining for reconstruction of latent tree models
arXiv
收藏 引用
arXiv 2020年
作者: Jaffe, Ariel Amsel, Noah Nadler, Boaz Chang, Joseph T. Kluger, Yuval Program in Applied Mathematics Yale University New HavenCT06511 United States Department of Computer Science Weizmann Institute of Science Rehovot76100 Israel Department of Statistics Yale University New HavenCT06520 United States Interdepartmental Program in Computational Biology and Bioinformatics New HavenCT06511 Singapore Department of Pathology New HavenCT06511 United States
A key assumption in multiple scientific applications is that the distribution of observed data can be modeled by a latent tree graphical model. An important example is phylogenetics, where the tree models the evolutio... 详细信息
来源: 评论
从磷酸酯化学刍议各类磷酸酶和三磷酸核苷酶的生物化学转化与机制
收藏 引用
化学教育(中英文) 2023年 第8期44卷 19-29页
作者: 王志鹏 蒋振雄 Maggie Chen 张璇 马新雨 车子良 Division of Genetics Department of MedicineBrigham and Women's HospitalDepartment of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA 02115USA Department of Chemistry Texas A&M UniversityCollege StationTX77840USA 清华大学化学系 北京100084 Department of Biology Texas A&M UniversityCollege StationTX 77840USA Computational Biology and Bioinformatics Program Duke Center for Genomics and Computational BiologyDuke University School of MedicineDurhamNC 27705USA Department of Microbiology Miami UniversityOxfordOH 45056USA Department of Chemistry and Chemical Biology Harvard UniversityCambridgeMA02138US 清华大学生命学院 北京100084 Department of Mathematics Harvard UniversityMA 02138 Citadel Securities LLC131 SouthDearborn St.Chicago Illinois 60603USA
磷作为一切生物体的必需元素,参与了包括生命体能量代谢、结构调控、遗传信息传递等在内的必要过程,其重要性不言而喻。然而,在国内基础学科教学过程中,基于酶促反应的调控机制和反应机理被拆分到众多生化专业相关的课程中,并未能得到... 详细信息
来源: 评论
Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI
arXiv
收藏 引用
arXiv 2024年
作者: Papamarkou, Theodore Skoularidou, Maria Palla, Konstantina Aitchison, Laurence Arbel, Julyan Dunson, David Filippone, Maurizio Fortuin, Vincent Hennig, Philipp Hernández-Lobato, José Miguel Hubin, Aliaksandr Immer, Alexander Karaletsos, Theofanis Khan, Mohammad Emtiyaz Kristiadi, Agustinus Li, Yingzhen Mandt, Stephan Nemeth, Christopher Osborne, Michael A. Rudner, Tim G.J. Rügamer, David Teh, Yee Whye Welling, Max Wilson, Andrew Gordon Zhang, Ruqi Department of Mathematics The University of Manchester Manchester United Kingdom Eric and Wendy Schmidt Center Broad Institute of MIT and Harvard Cambridge United States Spotify London United Kingdom Computational Neuroscience Unit University of Bristol Bristol United Kingdom Centre Inria de l'Université Grenoble Alpes Grenoble France Department of Statistical Science Duke University United States Statistics Program KAUST Saudi Arabia Helmholtz AI Munich Germany Department of Computer Science Technical University of Munich Munich Germany Munich Center for Machine Learning Munich Germany Tübingen AI Center University of Tübingen Tübingen Germany Department of Engineering University of Cambridge Cambridge United Kingdom Department of Mathematics University of Oslo Oslo Norway Bioinformatics and Applied Statistics Norwegian University of Life Sciences Ås Norway Department of Computer Science ETH Zurich Switzerland Chan Zuckerberg Initiative CA United States Center for Advanced Intelligence Project RIKEN Tokyo Japan Vector Institute Toronto Canada Department of Computing Imperial College London London United Kingdom Department of Computer Science UC Irvine Irvine United States Department of Mathematics and Statistics Lancaster University Lancaster United Kingdom Department of Engineering Science University of Oxford Oxford United Kingdom Center for Data Science New York University New York United States Department of Statistics LMU Munich Munich Germany DeepMind London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Informatics Institute University of Amsterdam Amsterdam Netherlands Courant Institute of Mathematical Sciences Center for Data Science Computer Science Department New York University New York United States Department of Computer Science Purdue University West Lafayette United States
In the current landscape of deep learning research, there is a predominant emphasis on achieving high predictive accuracy in supervised tasks involving large image and language datasets. However, a broader perspective... 详细信息
来源: 评论
Random-effects substitution models for phylogenetics via scalable gradient approximations
arXiv
收藏 引用
arXiv 2023年
作者: Magee, Andrew F. Holbrook, Andrew J. Pekar, Jonathan E. Caviedes-Solis, Itzue W. Matsen, Fredrick A. Baele, Guy Wertheim, Joel O. Ji, Xiang Lemey, Philippe Suchard, Marc A. Department of Biostatistics Jonathan and Karin Fielding School of Public Health University of California Los Angeles Los AngelesCA United States Bioinformatics and Systems Biology Graduate Program University of California San Diego La Jolla CA United States Department of Biomedical Informatics University of California San Diega La Jolla CA United States Department of Biology Swarthmore College SwarthmorePA United States Howard Hughes Medical Institute SeattleWA United States Computational Biology Program Fred Hutchinson Cancer Research Center SeattleWA United States Department of Genome Sciences University of Washington SeattleWA United States Department of Statistics University of Washington SeattleWA United States Department of Microbiology Immunology and Transplantation Rega Institute KU Leuven Leuven Belgium Department of Medicine University of California San Diego La Jolla CA United States Department of Mathematics Tulane University New OrleansLA United States Department of Biomathematics David Geffen School of Medicine at UCLA University of California Los Angeles Los AngelesCA United States Department of Human Genetics David Geffen School of Medicine at UCLA Universtiy of California Los Angeles Los AngelesCA United States
Phylogenetic and discrete-trait evolutionary inference depend heavily on an appropriate characterization of the underlying character substitution process. In this paper, we present random-effects substitution models t... 详细信息
来源: 评论
Biomedical data and AI
收藏 引用
Science China Life Sciences 2025年 第5期68卷 1536-1540页
作者: Hao Xu Shibo Zhou Zefeng Zhu Vincenzo Vitelli Liangyi Chen Ziwei Dai Ning Yang Luhua Lai Shengyong Yang Sergey Ovchinnikov Zhuoran Qiao Sirui Liu Chen Song Jianfeng Pei Han Wen Jianfeng Feng Yaoyao Zhang Zhengwei Xie Yang-Yu Liu Zhiyuan Li Fulai Jin Hao Li Mohammad Lotfollahi Xuegong Zhang Ge Yang Shihua Zhang Ge Gao Pulin Li Qi Liu Jing-Dong Jackie Han Peking-Tsinghua Center for Life Sciences (CLS) Academy for Advanced Interdisciplinary StudiesPeking University Center for Quantitative Biology (CQB) Academy for Advanced Interdisciplinary StudiesPeking University Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program Academy for Advanced Interdisciplinary StudiesPeking University Department of Physics University of Chicago School of Life Sciences Southern University of Science and Technology Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies College of Chemistry and Molecular Engineering Peking University Department of Biotherapy Cancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan University Department of Biology Massachusetts Institute of Technology Lambic Therapeutics Inc. Changping Laboratory Al for Science Institute Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Department of Obstetrics and Gynecology West China Second University HospitalSichuan University Peking University International Cancer Institute and Peking University-Yunnan Baiyao International Medical Institute and State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterPeking University Channing Division of Network Medicine Department of MedicineBrigham and Women's Hospital and Harvard Medical School Center for Artificial Intelligence and Modeling the Carl R.Woese Institute for Genomic BiologyUniversity of Illinois Urbana-Champaign Department of Genetics and Genome Sciences School of Medicine and Department of Computer and Data Sciences and Department of Population and Quantitative Health SciencesCase Western Reserve University Department of Biochemistry and Biophysics University of California Sanger Institute Department of Automation Tsinghua University State Key Laboratory of Multimodal Artificial Intelligence Systems I
The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integratin...
来源: 评论
Data driven point packing for fast clustering
Data driven point packing for fast clustering
收藏 引用
IEEE Symposium on Computational Intelligence and bioinformatics and Computational Biology (CIBCB)
作者: Matthew Stoodley Daniel Ashlock Steffen Graether The Bioinformatics Program at the University of Guelph The Department of Mathematics and Statistics The Bioinformatics Program at the University of Guelph The Department of Molecular and Cellular Biology The Bioinformatics Program at the University of Guelph
Modern data acquisition has forced the field of large data on the scientific community. This papers gives a rapid technique for clustering data. The technique is based on an off-line process for packing points chosen ... 详细信息
来源: 评论
Finding shortest and nearly shortest path nodes in large substantially incomplete networks
arXiv
收藏 引用
arXiv 2022年
作者: Kitsak, Maksim Ganin, Alexander Elmokashfi, Ahmed Cui, Hongzhu Eisenberg, Daniel A. Alderson, David L. Korkin, Dmitry Linkov, Igor Faculty of Electrical Engineering Mathematics and Computer Science Delft University of Technology Delft Netherlands Network Science Institute Northeastern University BostonMA02115 United States Department of Systems and Information Engineering University of Virginia CharlottesvilleVA22904 United States U.S. Army Engineer Research and Development Center Contractor Concord MA01742 United States Simula Metropolitan Center for Digital Engineering Oslo Norway Bioinformatics and Computational Biology Program Worcester Polytechnic Institute WorcesterMA01609 United States Institute for Genomic Medicine Columbia University Medical Center New YorkNY United States Operations Research Department Naval Postgraduate School MontereyCA93943 United States Data Science Program Worcester Polytechnic Institute WorcesterMA01609 United States Computer Science Department Worcester Polytechnic Institute WorcesterMA01609 United States U.S. Army Engineer Research and Development Center Environmental Laboratory Concord MA01742 United States
Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Unfortunately, our maps of ... 详细信息
来源: 评论
A meta-analysis of Boolean network models reveals design principles of gene regulatory networks
arXiv
收藏 引用
arXiv 2020年
作者: Kadelka, Claus Butrie, Taras-Michael Hilton, Evan Kinseth, Jack Schmidt, Addison Serdarevic, Haris Department of Mathematics Iowa State University AmesIA50011 United States Department of Aerospace Engineering Iowa State University AmesIA50011 United States Department of Computer Science Iowa State University AmesIA50011 United States Bioinformatics and Computational Biology Program Iowa State University AmesIA50011 United States
Gene regulatory networks (GRNs) play a central role in cellular decision-making. Understanding their structure and how it impacts their dynamics constitutes thus a fundamental biological question. GRNs are frequently ... 详细信息
来源: 评论
Artificial intelligence for modelling infectious disease epidemics
收藏 引用
Nature 2025年 第8051期638卷 623-635页
作者: Kraemer, Moritz U. G. Tsui, Joseph L.-H. Chang, Serina Y. Lytras, Spyros Khurana, Mark P. Vanderslott, Samantha Bajaj, Sumali Scheidwasser, Neil Curran-Sebastian, Jacob Liam Semenova, Elizaveta Zhang, Mengyan Unwin, H. Juliette T. Watson, Oliver J. Mills, Cathal Dasgupta, Abhishek Ferretti, Luca Scarpino, Samuel V. Koua, Etien Morgan, Oliver Tegally, Houriiyah Paquet, Ulrich Moutsianas, Loukas Fraser, Christophe Ferguson, Neil M. Topol, Eric J. Duchêne, David A. Stadler, Tanja Kingori, Patricia Parker, Michael J. Dominici, Francesca Shadbolt, Nigel Suchard, Marc A. Ratmann, Oliver Flaxman, Seth Holmes, Edward C. Gomez-Rodriguez, Manuel Schölkopf, Bernhard Donnelly, Christl A. Pybus, Oliver G. Cauchemez, Simon Bhatt, Samir Pandemic Sciences Institute University of Oxford Oxford United Kingdom Department of Biology University of Oxford Oxford United Kingdom Department of Electrical Engineering and Computer Science University of California Berkeley Berkeley CA United States UCSF UC Berkeley Joint Program in Computational Precision Health Berkeley CA United States Division of Systems Virology Department of Microbiology and Immunology The Institute of Medical Science The University of Tokyo Tokyo Japan Section of Epidemiology Department of Public Health University of Copenhagen Copenhagen Denmark Oxford Vaccine Group University of Oxford and NIHR Oxford Biomedical Research Centre Oxford United Kingdom Department of Epidemiology and Biostatistics Imperial College London London United Kingdom Department of Computer Science University of Oxford Oxford United Kingdom School of Mathematics University of Bristol Bristol United Kingdom MRC Centre for Global Infectious Disease Analysis School of Public Health Imperial College London London United Kingdom Department of Statistics University of Oxford Oxford United Kingdom Doctoral Training Centre University of Oxford Oxford United Kingdom Institute for Experiential AI Northeastern University MA Boston Thailand Santa Fe Institute Santa Fe NM United States World Health Organization Regional Office for Africa Brazzaville Congo WHO Hub for Pandemic and Epidemic Intelligence Health Emergencies Programme World Health Organization Berlin Germany Centre for Epidemic Response and Innovation (CERI) School for Data Science and Computational Thinking Stellenbosch University Stellenbosch South Africa African Institute for Mathematical Sciences (AIMS) South Africa Muizenberg Cape Town South Africa Genomics England London United Kingdom Scripps Research La Jolla CA United States Department of Biosystems Science and Engineering ETH Zürich Basel Switzerland Swiss Institute of Bioinformatics Lausanne Switzerland The Ethox Centre Nuffield
Infectious disease threats to individual and public health are numerous, varied and frequently unexpected. Artificial intelligence (AI) and related technologies, which are already supporting human decision making in e...
来源: 评论