咨询与建议

限定检索结果

文献类型

  • 123 篇 期刊文献
  • 70 篇 会议
  • 1 册 图书

馆藏范围

  • 194 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 理学
    • 68 篇 生物学
    • 36 篇 数学
    • 23 篇 化学
    • 13 篇 统计学(可授理学、...
    • 7 篇 系统科学
    • 6 篇 物理学
    • 2 篇 天文学
    • 2 篇 海洋科学
    • 2 篇 生态学
  • 104 篇 工学
    • 51 篇 计算机科学与技术...
    • 43 篇 生物工程
    • 35 篇 软件工程
    • 30 篇 生物医学工程(可授...
    • 13 篇 化学工程与技术
    • 11 篇 信息与通信工程
    • 8 篇 电气工程
    • 6 篇 控制科学与工程
    • 2 篇 光学工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 环境科学与工程(可...
  • 26 篇 农学
    • 8 篇 作物学
  • 22 篇 管理学
    • 12 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 11 篇 医学
    • 8 篇 基础医学(可授医学...
    • 7 篇 临床医学
    • 6 篇 药学(可授医学、理...
    • 3 篇 公共卫生与预防医...
  • 1 篇 经济学
    • 1 篇 理论经济学
  • 1 篇 法学
  • 1 篇 教育学

主题

  • 13 篇 proteins
  • 11 篇 bioinformatics
  • 7 篇 deep learning
  • 5 篇 rna
  • 4 篇 cancer
  • 4 篇 data integration
  • 4 篇 dna
  • 4 篇 computational bi...
  • 4 篇 mathematics
  • 4 篇 embeddings
  • 4 篇 gene expression
  • 4 篇 amino acids
  • 4 篇 mathematical mod...
  • 3 篇 protein engineer...
  • 3 篇 genes
  • 3 篇 data mining
  • 3 篇 biochemistry
  • 3 篇 count data
  • 3 篇 correlation
  • 3 篇 clustering algor...

机构

  • 12 篇 bioinformatics a...
  • 6 篇 university of co...
  • 6 篇 university colle...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 royal stoke univ...
  • 5 篇 biomedical engin...
  • 5 篇 department of ex...
  • 5 篇 victorian instit...
  • 5 篇 research core ce...

作者

  • 15 篇 krishnaswamy smi...
  • 14 篇 bens pardamean
  • 12 篇 pardamean bens
  • 10 篇 alam ahmad hiday...
  • 9 篇 hidayat alam ahm...
  • 9 篇 kluger yuval
  • 9 篇 smita krishnaswa...
  • 7 篇 wolf guy
  • 6 篇 bhaskar dhananja...
  • 5 篇 rudi nirwantono
  • 5 篇 nirwantono rudi
  • 5 篇 arif budiarto
  • 5 篇 van dijk david
  • 5 篇 joko pebrianto t...
  • 5 篇 perlmutter micha...
  • 4 篇 guy wolf
  • 4 篇 stanley jay s.
  • 4 篇 seungyeoun lee
  • 4 篇 landa boris
  • 4 篇 trinugroho joko ...

语言

  • 188 篇 英文
  • 5 篇 其他
  • 1 篇 中文
检索条件"机构=Program in Bioinformatics and Mathematics"
194 条 记 录,以下是81-90 订阅
排序:
Modeling Global Dynamics from Local Snapshots with Deep Generative Neural Networks
Modeling Global Dynamics from Local Snapshots with Deep Gene...
收藏 引用
International Conference on Sampling Theory and Applications (SampTA)
作者: Scott Gigante David van Dijk Kevin R. Moon Alexander Strzalkowski Guy Wolf Smita Krishnaswamy Computational Biology and Bioinformatics Program Yale University New Haven CT USA Department of Genetics Yale University New Haven CT USA Department of Mathematics and Statistics Utah State University Logan UT USA Department of Computer Science Princeton University Princeton NJ USA Department of Mathematics and Statistics Université de Montréal Montéal QC Canada
Complex high dimensional stochastic dynamic systems arise in many applications in the natural sciences and especially biology. However, while these systems are difficult to describe analytically, "snapshot" ... 详细信息
来源: 评论
bioinformatics Pathway Analysis Pipeline for NGS Transcriptome Profile Data on Nasopharyngeal Carcinoma
收藏 引用
IOP Conference Series: Earth and Environmental Science 2021年 第1期794卷
作者: Digdo Sudigyo Gisti Rahmawati Dicka W. Setiasari Risky H. Poluan Tjeng Wawan Cenggoro Arif Budiarto Alam Ahmad Hidayat Sri R. Indrasari Afiahayati Sofia M. Haryana Bens Pardamean Bioinformatics & Data Science Research Center Bina Nusantara University Jakarta Indonesia 11480 Study Program of Biotechnology Gadjah Mada University Yogyakarta Indonesia 55281 Computer Science Department School of Computer Science Bina Nusantara University Jakarta Indonesia 11480 Faculty of Medicine Public Health and Nursing Gadjah Mada University Yogyakarta Indonesia 55281 Department of Computer Science and Electronics Faculty of Mathematics and Natural Science Gadjah Mada University Yogyakarta Indonesia 55281 Computer Science Department BINUS Graduate Program - Master of Computer Science Program Bina Nusantara University Jakarta Indonesia 11480
Next-Generation Sequencing (NGS)-based genomics data have a huge potential to be used in transcriptomic profiling of Nasopharyngeal Carcinoma (NPC) to study the biosynthesis mechanism behind it. The high dimensionalit...
来源: 评论
An Evaluation of Deep Neural Network Performance on Limited Protein Phosphorylation Site Prediction Data
收藏 引用
Procedia Computer Science 2019年 157卷 25-30页
作者: Favorisen Rosyking Lumbanraja Bharuno Mahesworo Tjeng Wawan Cenggoro Arif Budiarto Bens Pardamean Department of Computer Science Faculty of Mathematics and Natural Science University of Lampung Jalan Prof. Dr. Sumantri Brojonegoro No.17 35145 Bandar Lampung Indonesia Bioinformatics and Data Science Research Center Bina Nusantara University Jakarta Indonesia 11480 Computer Science Department School of Computer Science Bina Nusantara University Jakarta Indonesia 11480 Computer Science Department BINUS Graduate Program - Master of Computer Science Program Bina Nusantara University Jakarta Indonesia 11480
One of the common and important post-translational modification (PTM) types is phosphorylation. Protein phosphorylation is used to regulate various enzyme and receptor activations which include signal pathways. There ... 详细信息
来源: 评论
Application of Random Forest in Limited Size Human Long Non-coding RNAs Identification with Secondary Structure Features
Application of Random Forest in Limited Size Human Long Non-...
收藏 引用
International Computer Science and Engineering Conference (ICSEC)
作者: Songtham Anuntakarun Warin Wattanapornprom Supatcha Lertampaiporn Bioinformatics and Systems Biology Program King Mongkut’s University of Technology Thonburi Bangkok Thailand Department of Mathematics University of Technology Thonburi Bangkok Thailand Biochemical Engineering and Systems Biology Research Group National Center for Genetic Engineering and Biotechnology (BIOTEC) King Mongkut’s University of Technology Thonburi Bangkok Thailand
In this work, preliminary experiments of using diverse machine learning algorithms and testing of multiple relevant features to discriminate between human lncRNAs and coding/partial coding sequences was performed. Thi...
来源: 评论
Multiscale PHATE Exploration of SARS-CoV-2 Data Reveals Multimodal Signatures of Disease
Research Square
收藏 引用
Research Square 2021年
作者: Kuchroo, Manik Huang, Jessie Wong, Patrick Grenier, Jean-Christophe Shung, Dennis Tong, Alexander Lucas, Carolina Klein, Jon Burkhardt, Daniel B. Gigante, Scott Godavarthi, Abhinav Rieck, Bastian Israelow, Benjamin Simonov, Michael Mao, Tianyang Oh, Ji Eun Silva, Julio Takahashi, Takehiro Odio, Camila D. Casanovas-Massana, Arnau Fournier, John Farhadian, Shelli Dela Cruz, Charles S. Ko, Albert I. Hirn, Matthew J. Wilson, F. Perry Hussin, Julie Wolf, Guy Iwasaki, Akiko Krishnaswamy, Smita Department of Neuroscience Yale University New HavenCT United States Department of Computer Science Yale University New HavenCT United States Department of Immunobiology Yale University New HavenCT United States Montreal Heart Institute MontréalQC Canada Department of Medicine Yale University New HavenCT United States Department of Genetics Yale University New HavenCT United States Computational Biology Bioinformatics Program Yale University New HavenCT United States Department of Applied Mathematics Yale University New HavenCT United States Department of Biosystems Science and Engineering ETH Zurich Switzerland Department of Epidemiology of Microbial Diseases Yale School of Public Health New HavenCT United States Department of Medicine Section of Infectious Diseases Yale University School of Medicine New HavenCT United States Department of Medicine Section of Pulmonary and Critical Care Medicine Yale University School of Medicine New HavenCT United States Department of Computational Mathematics Science and Engineering Michigan State University East LansingMI United States Department of Mathematics Michigan State University East LansingMI United States Clinical and Translational Research Accelerator Department of Medicine Yale University New HavenCT United States Faculty of Medicine Université de Montréal Québec Canada Mila – Quebec AI institute MontréalQC Canada Department of Mathematics and Statistics Université de Montréal MontréalQC Canada Howard Hughes Medical Institute Chevy ChaseMD United States
The biomedical community is producing increasingly high dimensional datasets, integrated from hundreds of patient samples, which current computational techniques struggle to explore. To uncover biological meaning from... 详细信息
来源: 评论
Ten quick tips for deep learning in biology
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Benjamin D. Gitter, Anthony Greene, Casey S. Raschka, Sebastian Maguire, Finlay Titus, Alexander J. Kessler, Michael D. Lee, Alexandra J. Chevrette, Marc G. Stewart, Paul Allen Britto-Borges, Thiago Cofer, Evan M. Yu, Kun-Hsing Carmona, Juan Jose Fertig, Elana J. Kalinin, Alexandr A. Signal, Beth Lengerich, Benjamin J. Triche, Timothy J. Boca, Simina M. In-Q-Tel Labs School of Engineering and Applied Sciences Harvard University Department of Genetics Harvard Medical School United States Department of Biostatistics and Medical Informatics University of Wisconsin-Madison MadisonWI United States Morgridge Institute for Research MadisonWI United States Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States Center for Health AI University of Colorado School of Medicine AuroraCO United States Department of Statistics University of Wisconsin Madison United States Faculty of Computer Science Dalhousie University Canada University of New Hampshire Bioeconomy.XYZ United States Department of Oncology Johns Hopkins University United States Institute for Genome Sciences University of Maryland School of Medicine United States Genomics and Computational Biology Graduate Program University of Pennsylvania United States Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania United States Wisconsin Institute for Discovery Department of Plant Pathology University of Wisconsin-Madison United States Department of Biostatistics and Bioinformatics Moffitt Cancer Center TampaFL United States Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology University Hospital Heidelberg Germany University Hospital Heidelberg Germany Lewis-Sigler Institute for Integrative Genomics Princeton University PrincetonNJ United States Graduate Program in Quantitative and Computational Biology Princeton University PrincetonNJ United States Department of Biomedical Informatics Harvard Medical School United States Department of Pathology Brigham and Women's Hospital United States Philips Healthcare CambridgeMA United States Philips Research
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and us... 详细信息
来源: 评论
Interpretable network propagation with application to expanding the repertoire of human proteins that interact with SARS-CoV-2
arXiv
收藏 引用
arXiv 2020年
作者: Law, Jeffrey N. Akers, Kyle Tasnina, Nure Della Santina, Catherine M. Deutsch, Shay Kshirsagar, Meghana Klein-Seetharaman, Judith Crovella, Mark Rajagopalan, Padmavathy Kasif, Simon Murali, T.M. Interdisciplinary Ph.D. Program in Genetics Bioinformatics and Computational Biology BlacksburgVA United States Department of Computer Science Virginia Tech BlacksburgVA United States Department of Biomedical Engineering Boston University BostonMA United States Department of Mathematics University of California Los AngelesCA United States AI for Good Lab Microsoft RedmondWA United States Department of Chemistry Colorado School of Mines GoldenCO United States Department of Computer Science Boston University BostonMA United States Department of Chemical Engineering Virginia Tech BlacksburgVA United States
Background: Network propagation has been widely used for nearly 20 years to predict gene functions and phenotypes. Despite the popularity of this approach, little attention has been paid to the question of provenance ... 详细信息
来源: 评论
Compressed Diffusion
Compressed Diffusion
收藏 引用
International Conference on Sampling Theory and Applications (SampTA)
作者: Scott Gigante Jay S. Stanley Ngan Vu David van Dijk Kevin R. Moon Guy Wolf Smita Krishnaswamy Comp. Bio. & Bioinformatics Program Yale University New Haven CT USA Dept. of Comp. Sci. Yale University New Haven CT USA Dept. of Genetics Yale University New Haven CT USA Dept. of Mathematics and Statistics Utah State University Logan UT USA Dept. of Mathematics and Statistics Université de Montréal Montéal QC Canada
Diffusion maps are a commonly used kernel-based method for manifold learning, which can reveal intrinsic structures in data and embed them in low dimensions. However, as with most kernel methods, its implementation re... 详细信息
来源: 评论
Scalable algorithms for learning high-dimensional linear mixed models
arXiv
收藏 引用
arXiv 2018年
作者: Tan, Zilong Roche, Kimberly Zhou, Xiang Mukherjee, Sayan Department of Computer Science Duke University Program in Computational Biology & Bioinformatics Duke University Department of Biostatistics Center for Statistical Genetics University of Michigan Departments of Statistical Science Mathematics Computer Science Biostatistics & Bioinformatics Duke University
Linear mixed models (LMMs) are used extensively to model dependecies of observations in linear regression and are used extensively in many application areas. Parameter estimation for LMMs can be computationally prohib... 详细信息
来源: 评论
Geometry based data generation  18
Geometry based data generation
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Ofir Lindenbaum Jay S. Stanley, III Guy Wolf Smita Krishnaswamy Applied Mathematics Program Yale University New Haven CT Computational Biology & Bioinformatics Program Yale University New Haven CT Departments of Genetics & Computer Science Yale University New Haven CT
We propose a new type of generative model for high-dimensional data that learns a manifold geometry of the data, rather than density, and can generate points evenly along this manifold. This is in contrast to existing...
来源: 评论