咨询与建议

限定检索结果

文献类型

  • 1,551 篇 期刊文献
  • 353 篇 会议
  • 2 册 图书

馆藏范围

  • 1,906 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,281 篇 理学
    • 568 篇 物理学
    • 410 篇 数学
    • 351 篇 生物学
    • 260 篇 化学
    • 221 篇 统计学(可授理学、...
    • 85 篇 地球物理学
    • 74 篇 系统科学
    • 50 篇 天文学
  • 1,048 篇 工学
    • 351 篇 计算机科学与技术...
    • 262 篇 软件工程
    • 187 篇 化学工程与技术
    • 186 篇 生物医学工程(可授...
    • 181 篇 生物工程
    • 147 篇 材料科学与工程(可...
    • 134 篇 电子科学与技术(可...
    • 122 篇 电气工程
    • 93 篇 信息与通信工程
    • 92 篇 控制科学与工程
    • 88 篇 力学(可授工学、理...
    • 83 篇 光学工程
    • 74 篇 动力工程及工程热...
    • 45 篇 仪器科学与技术
    • 44 篇 土木工程
  • 259 篇 医学
    • 186 篇 临床医学
    • 142 篇 基础医学(可授医学...
    • 78 篇 药学(可授医学、理...
    • 47 篇 公共卫生与预防医...
  • 147 篇 管理学
    • 73 篇 管理科学与工程(可...
    • 59 篇 图书情报与档案管...
  • 98 篇 农学
    • 41 篇 作物学
  • 22 篇 法学
  • 18 篇 经济学
  • 11 篇 教育学
  • 5 篇 文学
  • 2 篇 军事学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 36 篇 machine learning
  • 26 篇 proteins
  • 26 篇 molecular dynami...
  • 21 篇 density function...
  • 17 篇 galaxies
  • 16 篇 bioinformatics
  • 15 篇 computational mo...
  • 14 篇 deep learning
  • 13 篇 inverse problems
  • 13 篇 gene expression
  • 13 篇 diseases
  • 12 篇 gravitational wa...
  • 12 篇 electronic struc...
  • 12 篇 rna
  • 11 篇 optimization
  • 10 篇 jamming
  • 10 篇 microstructure
  • 9 篇 cancer
  • 9 篇 neural networks
  • 9 篇 computational in...

机构

  • 54 篇 program in appli...
  • 47 篇 department of ch...
  • 46 篇 program in appli...
  • 31 篇 department of ph...
  • 30 篇 department of ch...
  • 20 篇 department of ph...
  • 20 篇 princeton instit...
  • 19 篇 center for compu...
  • 19 篇 department of ph...
  • 19 篇 national astrono...
  • 17 篇 kavli institute ...
  • 17 篇 applied mathemat...
  • 17 篇 department of ph...
  • 17 篇 department of ph...
  • 16 篇 wits centre for ...
  • 15 篇 institute for pl...
  • 15 篇 california insti...
  • 15 篇 department of ch...
  • 15 篇 department of me...
  • 15 篇 princeton instit...

作者

  • 63 篇 salvatore torqua...
  • 40 篇 masuda naoki
  • 27 篇 zhang linfeng
  • 27 篇 weinan e.
  • 26 篇 torquato salvato...
  • 21 篇 s. torquato
  • 17 篇 krishnaswamy smi...
  • 17 篇 jasra ajay
  • 16 篇 friberg per
  • 15 篇 james david j.
  • 15 篇 gurwell mark
  • 15 篇 haggard daryl
  • 15 篇 cruz-osorio alej...
  • 15 篇 fromm christian ...
  • 15 篇 christian pierre
  • 15 篇 bremer michael
  • 14 篇 kettenis mark
  • 14 篇 o’hern corey s.
  • 14 篇 chael andrew
  • 14 篇 bronzwaer thomas

语言

  • 1,809 篇 英文
  • 79 篇 其他
  • 8 篇 中文
  • 1 篇 德文
  • 1 篇 西班牙文
  • 1 篇 法文
检索条件"机构=Program in Computational Science"
1906 条 记 录,以下是391-400 订阅
排序:
Protein folding as a jamming transition
arXiv
收藏 引用
arXiv 2024年
作者: Grigas, Alex T. Liu, Zhuoyi Logan, Jack A. Shattuck, Mark D. O’Hern, Corey S. Graduate Program in Computational Biology and Bioinformatics Yale University New HavenCT06520 United States Integrated Graduate Program in Physical and Engineering Biology Yale University New HavenCT06520 United States Department of Mechanical Engineering and Materials Science Yale University New HavenCT06520 United States Benjamin Levich Institute and Physics Department The City College of New York New YorkNY10031 United States Department of Physics Yale University New HavenCT06520 United States Department of Applied Physics Yale University New HavenCT06520 United States
Proteins fold to a specific functional conformation with a densely packed hydrophobic core that controls their stability. We develop a geometric, yet all-atom model for proteins that explains the universal core packin... 详细信息
来源: 评论
Compressed Parametric and Non-Parametric Approximations to the Gravitational Wave Likelihood
arXiv
收藏 引用
arXiv 2022年
作者: Delfavero, Vera O’Shaughnessy, Richard Wysocki, Daniel Yelikar, Anjali NASA Postdoctoral Program Astrophysics Science Division NASA Goddard Space Flight Center GreenbeltMD20771 United States Center for Computational Relativity and Gravitation Rochester Institute of Technology RochesterNY14623 United States Department of Physics University of Wisconsin–Milwaukee MilwaukeeWI53201 United States
Gravitational-wave observations of quasicircular compact binary mergers imply complicated posterior measurements of their parameters. Though Gaussian approximations to the pertinent likelihoods have decades of history... 详细信息
来源: 评论
Interpretable Symbolic Regression for Data science: Analysis of the 2022 Competition
arXiv
收藏 引用
arXiv 2023年
作者: de Franca, F.O. Virgolin, M. Kommenda, M. Majumder, M.S. Cranmer, M. Espada, G. Ingelse, L. Fonseca, A. Landajuela, M. Petersen, B. Glatt, R. Mundhenk, N. Lee, C.S. Hochhalter, J.D. Randall, D.L. Kamienny, P. Zhang, H. Dick, G. Simon, A. Burlacu, B. Kasak, Jaan Machado, Meera Wilstrup, Casper La Cava, W.G. Federal University of ABC Santo Andre Brazil Evolutionary Intelligence Group Centrum Wiskunde & Informatica Science Park 123 Amsterdam Netherlands Computational Health Informatics Program Boston Children's Hospital Harvard Medical School Boston United States University of Applied Sciences Upper Austria Hagenberg Austria Center for Computational Astrophysics Flatiron Institute Department of Astrophysical Sciences Princeton University United States LASIGE Faculdade de Ciências Universidade de Lisboa Lisboa Portugal Computational Engineering Division Lawrence Livermore National Laboratory Livermore United States University of Utah Department of Mechanical Engineering Utah United States Meta FAIR France Victoria University of Wellington School of Engineering and Computer Science New Zealand University of otago Department of Information Science New Zealand Institut für Angewandte Physik Universität Tübingen Max Planck Institute for Intelligent Systems Tübingen Germany Abzu AI Orient Plads 1 Nordhavn 2150 Denmark
Symbolic regression searches for analytic expressions that accurately describe studied phenomena. The main attraction of this approach is that it returns an interpretable model that can be insightful to users. Histori... 详细信息
来源: 评论
Estimating Classification Confidence Using Kernel Densities
arXiv
收藏 引用
arXiv 2022年
作者: Salamon, Peter Salamon, David Cantu, V. Adrian An, Michelle Perry, Tyler Edwards, Robert A. Segall, Anca M. The Department of Mathematics and Statistics The Computational Science Research Center The Viral Information Institute San Diego State University San DiegoCA92182 United States The Department of Mathematics and Statistics San Diego State University San DiegoCA92182 United States The Computational Science Research Center The Department of Biology San Diego State University San DiegoCA92182 United States The Perelman School of Medicine The University of Pennsylvania 425 Johnson Pavilion 3610 Hamilton Walk PhiladelphiaPA19104 United States The Computational Science Research Center San Diego State University San DiegoCA92182 United States Google 1600 Amphitheater Parkway Mountain ViewCA94043 United States The Bioinformatics and Medical Informatics Program San Diego State University San DiegoCA92182 United States Helix 9875 Towne Center Drive San DiegoCA92121 United States The Department of Biology The Computational Science Research Center The Viral Information Institute The Bioinformatics and Medical Informatics Program San Diego State University San DiegoCA92182 United States
This paper investigates the post-hoc calibration of confidence for "exploratory" machine learning classification problems. The difficulty in these problems stems from the continuing desire to push the bounda... 详细信息
来源: 评论
Heat transport in liquid water from first-principles and deep neural network simulations
收藏 引用
Physical Review B 2021年 第22期104卷 224202-224202页
作者: Davide Tisi Linfeng Zhang Riccardo Bertossa Han Wang Roberto Car Stefano Baroni SISSA–Scuola Internazionale Superiore di Studi Avanzati 34136 Trieste Italy Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing 100088 People's Republic of China Department of Chemistry Department of Physics and Princeton Institute for the Science and Technology of Materials Princeton University Princeton New Jersey 08544 USA CNR Istituto Officina dei Materiali SISSA unit 34136 Trieste Italy
We compute the thermal conductivity of water within linear response theory from equilibrium molecular dynamics simulations, by adopting two different approaches. In one, the potential energy surface (PES) is derived o... 详细信息
来源: 评论
Machine-learning-based non-Newtonian fluid model with molecular fidelity
收藏 引用
Physical Review E 2020年 第4期102卷 043309-043309页
作者: Huan Lei Lei Wu Weinan E Department of Computational Mathematics Science & Engineering and Department of Statistics & Probability Michigan State University East Lansing Michigan 48824 USA Department of Mathematics and Program in Applied and Computational Mathematics Princeton University Princeton New Jersey 08544 USA
We introduce a machine-learning-based framework for constructing continuum a non-Newtonian fluid dynamics model directly from a microscale description. Dumbbell polymer solutions are used as examples to demonstrate th... 详细信息
来源: 评论
Author Correction: Single-cell multi-ome regression models identify functional and disease-associated enhancers and enable chromatin potential analysis
收藏 引用
Nature genetics 2024年 第6期56卷 1319页
作者: Sneha Mitra Rohan Malik Wilfred Wong Afsana Rahman Alexander J Hartemink Yuri Pritykin Kushal K Dey Christina S Leslie Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center New York City NY USA. Rye Country Day School Rye NY USA. Tri-Institutional Training Program in Computational Biology and Medicine New York City NY USA. Hunter College City University of New York New York City NY USA. Department of Computer Science Duke University Durham NC USA. Program in Computational Biology and Bioinformatics Duke University Durham NC USA. Center for Genomic and Computational Biology Duke University Durham NC USA. Department of Computer Science Princeton University Princeton NJ USA. Lewis-Sigler Institute for Integrative Genomics Princeton University Princeton NJ USA. Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center New York City NY USA. deyk@***. Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center New York City NY USA. lesliec@***.
来源: 评论
An Evolutionary Analytic Center Classifier  9th
An Evolutionary Analytic Center Classifier
收藏 引用
9th Brazilian Conference on Intelligent Systems, BRACIS 2020
作者: Goulart, Renan Motta Villela, Saulo Moraes Borges, Carlos Cristiano Hasenclever Neto, Raul Fonseca Postgraduate Program in Computational Modeling Federal University of Juiz de Fora Juiz de ForaMinas Gerais Brazil Department of Computer Science Federal University of Juiz de Fora Juiz de ForaMinas Gerais Brazil
Classification is an essential task in the field of Machine Learning, where developing a classifier that minimizes errors on unknown data is one of its central problems. It is known that the analytic center is a good ... 详细信息
来源: 评论
QAEmap: A Novel Local Quality Assessment Method for Protein Crystal Structures Using Machine Learning
Research Square
收藏 引用
Research Square 2021年
作者: Miyaguchi, Ikuko Sato, Miwa Kashima, Akiko Nakagawa, Hiroyuki Kokabu, Yuichi Ma, Biao Matsumoto, Shigeyuki Tokuhisa, Atsushi Ohta, Masateru Ikeguchi, Mitsunori Mitsubishi Tanabe Pharma Co. LTD Japan RIKEN Medical Sciences Innovation Hub Program Japan RIKEN Center for Computational Science Japan Kyoto university Japan Yokohama City University Japan
Low-resolution electron density maps can pose a major obstacle in the determination and use of protein structures. Herein, we describe a novel method, quality assessment based on an electron density map (QAEmap), that... 详细信息
来源: 评论
Deep neural network for the dielectric response of insulators
收藏 引用
Physical Review B 2020年 第4期102卷 041121(R)-041121(R)页
作者: Linfeng Zhang Mohan Chen Xifan Wu Han Wang Weinan E Roberto Car Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University Princeton New Jersey 08544 USA
We introduce a deep neural network to model in a symmetry preserving way the environmental dependence of the centers of the electronic charge. The model learns from ab initio density functional theory, wherein the ele... 详细信息
来源: 评论