版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
Abstract: We study $H(\mathrm {div})$ preconditioning for the saddle-point systems that arise in a stochastic Galerkin mixed formulation of the steady-state diffusion problem with random data. The key ingredient is a multigrid V-cycle for an $H(\mathrm {div})$ operator with random weight function acting on a certain tensor product space of random fields with finite variance. We build on the Arnold-Falk-Winther multigrid algorithm presented in 1997 by varying the spatial discretization from grid to grid whilst keeping the stochastic discretization fixed. We extend the deterministic analysis to accommodate the modified $H(\mathrm {div})$ operator and establish spectral equivalence bounds with a new multigrid V-cycle operator that are independent of the spatial and stochastic discretization parameters. We implement multigrid within a block-diagonal preconditioner for the full saddle-point problem, derive eigenvalue bounds for the preconditioned system matrices and investigate the impact of all the discretization parameters on the convergence rate of preconditioned minres.
电话和邮箱必须正确填写,我们会与您联系确认。
版权所有:内蒙古大学图书馆 技术提供:维普资讯• 智图
内蒙古自治区呼和浩特市赛罕区大学西街235号 邮编: 010021
暂无评论