The global nitrogen cycle holds immense importance due to its crucial role in supporting life, supplying vital nutrients for plant growth, preserving environmental balance, and enabling the proper functioning of ecosy...
详细信息
The global nitrogen cycle holds immense importance due to its crucial role in supporting life, supplying vital nutrients for plant growth, preserving environmental balance, and enabling the proper functioning of ecosystems. However, human activities frequently disrupt this cycle, leading to the accumulation of nitrates and nitrites in water bodies. This accumulation causes environmental pollution and health risks. Traditional methods for treating nitrogen pollution, including biological, physical, and chemical approaches, have inherent limitations. In recent years, electrocatalysis has emerged as a promising and sustainable approach for nitrogen management. This technology offers superior efficiency, high selectivity, and environmental *** not only enables accurate detection of nitrogen pollutants in the environment but also facilitates their conversion into harmless nitrogen gas. Moreover, recent advancements have focused on the upcycling of nitrogen pollutants into valuable compounds,such as ammonia and urea. In this comprehensive review, we showcase the applications of electrocatalysis in sustainable nitrogen management. Specifically, we highlight its use in the sensing, removal, and upcycling of major nitrogen pollutants,including nitrate(NO3-), nitrite(NO2-), and nitric oxide(NO). We discuss the use of catalysts, such as Pd alloys, Cu-based, and Fe-based materials, in electrochemical sensing and catalysis. Additionally, we explore recent advancements in the conversion of nitrogen pollutants into valuable compounds like ammonia and urea. The review also addresses current challenges and future opportunities in the field, including innovations in sensor and catalyst design, as well as large-scale treatment strategies. We anticipate that these perspectives will provide profound insights for effective nitrogen pollution control and sustainable utilization of nitrogen resources.
Photoacoustic imaging,an acoustic imaging modality with potentially optical resolution in an optical turbid medium,has attracted great ***,the convergence of wavefront optimization and raster scanning in computational...
详细信息
Photoacoustic imaging,an acoustic imaging modality with potentially optical resolution in an optical turbid medium,has attracted great ***,the convergence of wavefront optimization and raster scanning in computational photoacoustic imaging leads to the challenge of fast mapping,especially for a spatial resolution approaching the acoustic deep-subwavelength *** a sparse sampling paradigm,compressive sensing has been applied in numerous fields to accelerate data acquisition without significant quality *** this work,we propose a dual-compressed approach for photoacoustic surface tomography that enables high-efficiency imaging with 3D spatial resolution unlimited by the acoustics in a turbid *** dual-compressed photoacoustic imaging with single-pixel detection,enabled by spatially optical modulation with synchronized temporally photoacoustic coding,allows decoding of the fine optical information from the modulated acoustic signal even when the variance of original photoacoustic signals is *** perform a proof-of-principle numerical demonstration of dual-compressed photoacoustic imaging, that resolves acoustic sub-acoustic-wavelength details with a significantly reduced number of measurements,revealing the potential for dynamic *** dual-compressed concept,which transforms unobtrusive spatial difference into spatio-temporal detectable information,can be generalized to other imaging modalities to re alize efficient,high-spatial-resolution imaging.
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
As global population rises,accompanied by escalating environmental pollution and climate change,numerous countries find themselves grappling with an acute scarcity of natural freshwater resources^([1]).Seawater desali...
详细信息
As global population rises,accompanied by escalating environmental pollution and climate change,numerous countries find themselves grappling with an acute scarcity of natural freshwater resources^([1]).Seawater desalination presents a compelling solution to this looming crisis,especially considering the oceans are Earth’s largest water reservoir^([2]).
We synthesized CaRuO3 (001) thin films on a set of substrates and investigated their electronic and magnetic properties via combining magnetotransport measurements with first-principles density-functional theory calcu...
详细信息
We synthesized CaRuO3 (001) thin films on a set of substrates and investigated their electronic and magnetic properties via combining magnetotransport measurements with first-principles density-functional theory calculations. The experimental results indicate that a moderate strain can introduce the Kondo effect in the system, leading to a significant modulation of the non-Fermi liquid behavior. Moreover, when the strain reaches a certain threshold, the system undergoes a metal-semiconductor transition, accompanied by a transition from a nonmagnetic state to a plausible G-type antiferromagnetic state. We attribute the observed phenomena in CaRuO3 to strain-induced disruption of the delicate balance between the itinerant and the local Ru 4d electrons. These findings shed light on the intriguing magnetic and non-Fermi liquid behavior of CaRuO3, systematically tailored by heteroepitaxial strain.
Poverty is considered a serious global issue that must be immediately eradicated by Sustainable Development Goals (SDGs) 1, namely ending poverty anywhere and in any form. As a developing country, poverty is a complex...
详细信息
Organosulfur materials are a sustainable alternative to the present-day layered oxide cathodes in lithium-based *** such organosulfur material that was intensely explored from the 1990s to early 2010s is 2,5-dimercapt...
详细信息
Organosulfur materials are a sustainable alternative to the present-day layered oxide cathodes in lithium-based *** such organosulfur material that was intensely explored from the 1990s to early 2010s is 2,5-dimercapto-1,3,4-thiadiazole(DMCT).However,research interest declined as the electrode reactions with DMCT were assumed to be too sluggish to be *** with the advances in metal-sulfur batteries,we revisit DMCT-based materials in the form of poly[tetrathio-2,5-(1,3,4-thiadiazole)],referred to as *** an appropriate choice of electrode design and electrolyte,pDMCT-S cathode paired with a Li-metal anode shows a capacity of 715 mA h g^(-1)and a Coulombic efficiency of 97.7%at a C/10 rate,thus quelling the concerns of sluggish ***,pDMCT-S shows significantly improved long-term cyclability compared to a sulfur *** into the origin of the stability reveals that the discharge product Li-DMCT in its mesomeric form can strongly bind to polysulfides,preventing their dissolution into the electrolyte and *** unique mechanism solves a critical problem faced by sulfur ***,this mechanism results in a stable performance of pDMCT-S with Na-metal cells as *** study opens the potential for exploring other organic materials that have inherent polysulfide sequestering capabilities,enabling long-life metal-sulfur batteries.
The simultaneous optimization of the bulk and surface characteristics of photoelectrodes is essential to maximize their photoelectrochemical(PEC)*** report a novel one-pot hydrothermal synthesis of textured and surfac...
详细信息
The simultaneous optimization of the bulk and surface characteristics of photoelectrodes is essential to maximize their photoelectrochemical(PEC)*** report a novel one-pot hydrothermal synthesis of textured and surface-reconstructed BiVO_(4)photoanodes(ts-BVO),achieving significant improvements in PEC water *** controlling precursor molarity and ethylene glycol(EG)addition,we developed a stepwise dual reaction(SDR)mechanism,which enables simultaneous bulk texture development and surface *** optimized CoBi/ts-BVO photoanode exhibited a photocurrent density of 4.3 mA∙cm^(−2)at 1.23 V *** hydrogen electrode(RHE)with a high Faradaic efficiency of 98%under one sun *** with nontextured BiVO_(4),the charge transport efficiency increased from 8%to 70%,whereas the surface charge transfer efficiency improved from 9%to 85%.These results underscore the critical role of both bulk and surface engineering in enhancing PEC *** findings offer a streamlined approach for improving the intrinsic properties of photoanodes in solar water splitting.
Purpose of Review: Changing hydroclimate creates risks to the western U.S. electric grid, particularly when hydropower generation changes, but tools to characterize these risks are relatively new. Here, we ask: how is...
暂无评论