Polybenzoxazine (PBZ), a novel class of high performance thermosetting phenolic resin, has been developed in order to overcome many shortcomings of conventional phenolic materials from either novolac or resole type re...
详细信息
This paper describes inverted bulk heterojunction organic solar cells featuring solution-processed zinc oxide nanoparticles (ZnO NPs) as an electron extraction layer, prepared at relatively low annealing temperatures ...
详细信息
In this study, novel surfactant-coated magnetic nanoparticles were synthesized and evaluated for enrichment performance towards the sensitive detection of disease biomarkers. Surfactants with phosphate ester groups (R...
In this study, novel surfactant-coated magnetic nanoparticles were synthesized and evaluated for enrichment performance towards the sensitive detection of disease biomarkers. Surfactants with phosphate ester groups (RD35A and RD66) were used as a coating to reduce aggregation and to enhance the nanoparticle dispersion. Importantly, sensitive enrichment of the target proteins using the antibody-functionalized magnetic nanoparticles (Ab@MNP) was obtained, with a five-fold increase in recovery compared to uncoated magnetic nanoparticles. Similarly, phosphopeptide enrichment using the NTA@MNP in standard samples showed that the nanoparticles could selectively enrich phosphorylated peptides.
The goal of this work was to use molecular dynamics (MD) simulations to build amorphous surface layers of polypropylene (PP) and cellulose and to inspect their physical and interfacial properties. A new method to prod...
详细信息
The goal of this work was to use molecular dynamics (MD) simulations to build amorphous surface layers of polypropylene (PP) and cellulose and to inspect their physical and interfacial properties. A new method to produce molecular models for these surfaces was developed, which involved the use of a “soft” confining layer comprised of a xenon crystal. This method compacts the polymers into a density distribution and a degree of molecular surface roughness that corresponds well to experimental values. In addition, calculated properties such as density, cohesive energy density, coefficient of thermal expansion, and the surface energy agree with experimental values and thus validate the use of soft confining layers. The method can be applied to polymers with a linear backbone such as PP as well as those whose backbones contain rings, such as cellulose. The developed PP and cellulose surfaces were characterized by their interactions with water. It was found that a water nanodroplet spreads on the amorphous cellulose surfaces, but there was no significant change in the dimension of the droplet on the PP surface; the resulting MD water contact angles on PP and amorphous cellulose surfaces were determined to be 106 and 33°, respectively. [ABSTRACT FROM AUTHOR]
In this study, a low viscosity, high performance cyanate ester (CE) resin system was used with non-functionalized and functionalized multiwall carbon nanotubes (MWNTs) to create cyanate ester-MWNT nanocomposites. Effe...
详细信息
This paper presents the design and fabrication of a highly-miniaturized system for continuous glucose monitoring which holds great promise for patients inflicted with diabetes mellitus. To achieve the realization of a...
详细信息
ISBN:
(纸本)9781479903313
This paper presents the design and fabrication of a highly-miniaturized system for continuous glucose monitoring which holds great promise for patients inflicted with diabetes mellitus. To achieve the realization of a truly implantable system, a variety of issues such as robust electrochemical sensor design, miniaturization of the electronic components and counteracting biofouling and negative tissue response need to be addressed. In this report, we present a highly-miniaturized transcutaneous continuous glucose monitoring system which holistically addresses the aforementioned tribulations associated with implantable devices. Specifically, a high performance amperometric electrochemical glucose sensor is integrated with custom designed complementary metal-oxide-semiconductor electronics. The fabricated electrochemical sensor is Clark-based, and employs stratification of five functional layers to achieve a linear response within the physiological range of glucose concentration (2–22 mM). Furthermore, the sensor is encased with a thick polyvinyl alcohol (PVA) hydrogel containing poly(lactic-co-glycolic acid) (PLGA) microspheres which provides continuous, localized delivery of dexamethasone utilized to combat inflammation and fibrosis. Such miniature size (0.665 mm 2 ) and low power operation (140 μW) of the electronic system render it ideal for continuous glucose monitoring devices and other metabolic sensing systems.
This article was originally published online on 29 September 2014 with an error in the journal title of Ref. 36. The corrected reference appears below:
This article was originally published online on 29 September 2014 with an error in the journal title of Ref. 36. The corrected reference appears below:
暂无评论